Title

毫米波及次毫米波電波天文混頻器研製與接收機測試

Translated Titles

Mixer Development and Receiver Measurement for Millimeter- and Submillimeter-Wave Astronomy

DOI

10.6342/NTU.2005.01240

Authors

黃裕津

Key Words

接收機 ; 混頻器 ; 電波天文 ; 毫米波 ; 次毫米波 ; receiver ; radio astronomy ; mixer ; millimeter wave ; submillimeter wave

PublicationName

臺灣大學電信工程學研究所學位論文

Volume or Term/Year and Month of Publication

2005年

Academic Degree Category

博士

Advisor

瞿大雄

Content Language

英文

Chinese Abstract

本論文內容主要為敘述毫米波次調諧混頻器研製,及毫米波與次毫米波天文望遠鏡之接收機系統測試。次調諧混頻器研製包含混頻器單晶毫米波積體電路及電路封裝,接收機系統測試則包含宇宙背景輻射陣列望遠鏡(AMiBA) 接收機及次毫米陣列望遠鏡(SMA) 接收機。 本論文敘述之W-頻段次調諧混頻器單晶毫米波積體電路,包含二極體混頻器,及高電子動率電晶體(HEMT)閘極混頻器。二極體混頻器係使用美國TRW公司製程,HEMT閘極混頻器則使用穩懋半導體公司製程。研製結果顯示,包含電路封裝模組,原型二極體混頻器有36GHz頻寬,於48GHz本地振盪信號,射頻頻率共為78-114GHz,雙旁波段中頻頻率為0.5-18GHz。次調諧二極體混頻器之寬頻設計經改善,可達到1-20GHz中頻頻率,轉換損失之變化量則維持在±1.5 dB。HEMT閘極混頻器之設計,則使用Curtice電晶體模型之廣義形式,建立電路轉換增益理論,電晶體之模型參數則用於模擬轉換增益。次調諧混頻器電路設計係使用Agilent/EEsof軟體之諧波平衡法進行模擬,轉換增益量測值與模擬值均相當吻合。 研製之次調諧二極體混頻器,安裝於AMiBA W-頻段之差頻式寬頻接收機,該接收機具有20GHz之中頻瞬時頻寬,用於觀測極微弱之宇宙背景輻射。由於接收機中頻信號係以類比式相關計算進行分析,接收機雜訊溫度及轉換增益對頻率之變化量,需儘可能降低。依據原型機之測試結果,經進一步系統設計修改,第一組量產型接收機,在轉換增益平坦度及雜訊溫度均有顯著改善。 最後,論文並敘述兩組600-696GHz差頻式接收機之整合測試。整合測試中最關鍵之項目係使用向量場型量測接收機之光學系統。此一量測基本上是於次毫米波頻段,進行向量網路分析。透過頻率合成及轉換關係式,本論文建立一套簡化而可靠的向量網路分析裝置,用於690GHz之場型量測。接收機光學裝置經場型量測及校正後,進一步進行接收機中頻頻寬、雜訊溫度及雜訊來源分析量測。兩組差頻式接收機目前已安裝於次毫米波陣列望遠鏡,進行天文觀測。 電波天文望遠鏡之接收機是一個極為龐大之系統,所牽涉之專業知識,不僅涵蓋電波工程及電機電子工程,舉凡超導材料、低溫真空及精密機械加工設計等,均須涉獵。因此相較於建造電波天文望遠鏡所須的眾多研究課題,本論文所討論之題材只為其中之一二。除了毫米波及次毫米波天文儀器研發應用之外,論文研製之混頻器,可應用於W-頻段通訊系統,而研製之690GHz向量網路分析裝置,則可應用於1THz以下之天線及電路特性量測。

English Abstract

In this dissertation, design and development of millimeter-wave subharmonically pumped (SHP) mixers, millimeter-wave and submillimeter-wave heterodyne receiver systems for radio-astronomical astronomy are presented. The mixer development includes the monolithic millimeter-wave integrated circuits (MMIC) and the packaged modules. The heterodyne receiver measurements includes AMiBA (Array of Microwave Background Anisotropy) receiver and SMA (Submillimeter Array) receiver. The W-band SHP MMIC mixers described in this dissertation are diode mixers and HEMT gate mixer. The SHP diode mixers are fabricated by TRW Inc., and the SHP HEMT gate mixer is fabricated by WIN Semiconductor Corp. For packaged modules, the SHP diode mixer prototype shows 36-GHz bandwidth covering 78-114GHz RF frequency and 0.5-18GHz double sideband IF frequency under 48 GHz LO pumping signal. The broadband design approach for SHP diode mixer is discussed and implemented. The improved SHP diode mixers show 1-20GHz IF frequency with only ±1.5 dB conversion fluctuation. For HEMT gate mixer, extended Curtice model is applied to formulate the conversion gain. The device parameters are extracted to calculate the predicted conversion gain. The circuit is simulated using the HP/EEsof harmonic balance analysis. The measured results of maximum conversion gain agree with the simulation results. The wideband heterodyne receiver for W-band AMiBA is developed using the developed SHP diode mixers. This receiver requires a 20 GHz IF instantaneous bandwidth for extremely faint cosmic microwave background radiation detection. In order to use the analog correlation for the received signal processing, the noise temperature and receiver conversion gain fluctuation over the operation bandwidth should be minimized. The system design is revised after the measurement of prototype receivers. The first set of the production receiver shows an improvement on the receiver conversion gain flatness and receiver noise temperature. Integration and testing of two sets of 600-696GHz heterodyne receivers are also described in this dissertation. One of the critical testing is to measure the receiver vector beam pattern for optics alignment verification. This measurement is basically to perform vector network analysis in the submillimeter wave range. Based on a new frequency synthesis and conversion formulation, an effective and stable vector network analysis configuration is developed for 690GHz beam pattern measurement. With the beam pattern measurement the receiver optics are characterized. The calibrated receiver is then further conducted for the measurement of IF frequency coverage, receiver noise temperature and the noise contribution analysis. These two receivers are now installed into the SMA telescopes for astronomy observation. In general, the development on the devices and receiver systems for radio astronomical telescopes is a complicated engineering work. It needs a well-organized team with well-disciplined engineers in different fields, e.g. electromagnetic waves, electronics, superconductivity, cryogenics, vacuum technology, and precision machining. Compared to all the knowledge required for the radio telescope, the techniques described in this dissertation is only a small portion. In addition using in the millimeter and submillimeter wave astronomy instrumentation, the developed SHP mixer can find applications in W-band communication system and the developed 690 GHz vector network analysis configuration is capable in the antenna or circuit characterization with frequency up to 1THz.

Topic Category 電機資訊學院 > 電信工程學研究所
工程學 > 電機工程
Reference
  1. [1] K. G. Jansky, “Electrical disturbances apprently of extraterrestial origin,” Proc. IRE, vol. 21, pp. 1387-1398, Oct. 1933.
    連結:
  2. [2] T. G. Phillips and J. Keene, “Submillimeter astronomy,” Proc. of the IEEE, vol. 80, no. 11, pp. 1662-1678, Nov. 1992.
    連結:
  3. [3] J. M. Moran, “Submillimeter array,” Proc. SPIE, vol. 3357, Advanced Technology MMW, Radio, and Terahertz Telescopes, pp. 208-219, Ed. T. G. Phillips.
    連結:
  4. [4] J. R. Tucker and M. J. Feldman, “Quantum detection at millimetre wavelengths,” Rev. Modern Phy., vol. 57, no. 4, pp. 1055-1112, October 1985.
    連結:
  5. [5] D. E. Prober, “Superconducting terahertz mixer using a transition-edge microbolometer,” Appl. Phy. Lett., vol. 62, no. 17, pp. 2119-2121, Apr. 1993.
    連結:
  6. [8] Central Development Laboratory, National Radio Astronomy Observatory, Charlottesville, VA, USA.
    連結:
  7. [12] A. A. Penzias and R. W. Wilson, “A measurement of excess antenna temperature at 4080 Mc/s,” Astrophy. J., vol. 142, pp. 419-421, July 1965.
    連結:
  8. [13] J. C. Mather et al., “A preliminary measurement of the cosmic microwave background spectrum by the Cosmic Background Explorer (COBE) satellite,” Astrophys. J., Part 2 - Letters, vol. 354, pp. 37-40, May 1990.
    連結:
  9. [15] C. L. Bennett, et al., “First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: preliminary maps and basic results,” Astrophys. J. Suppl. vol 148, pp. 1-43, June 2003.
    連結:
  10. [16] M. C. Runyan et al., “ACABAR: the Arcminute cosmology Bolometer Array Receiver,” Astrophys. J. Suppl., vol. 149, pp. 265-324, 2003.
    連結:
  11. [20] S. Padin, J. K. Cartwright, M. Joy, and J. C. Meitzer, “A measurement of the coupling between closed-packed shielded Cassegrain antenna,” IEEE Trans. Antenna Propag., vol. AP-48, no. 5, pp. 836-838, May 2000.
    連結:
  12. [21] Y.-J. Hwang, C.-H. Lien, Huei Wang, R. G. Gough, M. W. Sinclair, and T.-H. Chu, "A 78-114 GHz monolithic subharmonically pumped GaAs-based HEMT diode mixer," IEEE Microwave and Wireless Components Letters, Vol. 12, No. 6, pp. 209-211, June 2002.
    連結:
  13. [22] Y.-J. Hwang, Huei Wang, and T.-H. Chu, “A W-band subharmonically pumped monolithic GaAs-based HEMT gate mixer,” IEEE Microwave and Wireless Components Letters, Vol. 14, No. 7, July 2004.
    連結:
  14. [23] Y.-J. Hwang and T.H Chu, "A new measurement method for four-port scattering matrix of a dual-polarization antenna," 2001 IEEE Int. Antennas and Propag. Sym. Dig., Volume: 2. pp. 645 -648, July 2001.
    連結:
  15. [24] Y.-J. Hwang, M.-T. Chen, Huei Wang, R. G. Gough, and M. W. Sinclair, “W-band GaAs HEMT MMIC subharmonically pumped diode mixers for Array of Microwave Background Anisotropy (AMiBA) receivers,” Proc. of XXVII URSI General Assembly, Aug. 2002.
    連結:
  16. [26] Y.-J. Hwang, Huei Wang, and T.-H. Chu, “W-band GaAs HEMT MMIC subharmonically pumped diode mixers with 20 GHz IF bandwidth,” Proc. of 32th European Microwave Conf., Vol. 1, pp. 87-90, Sept. 2002.
    連結:
  17. [27] Y.-J. Hwang, M.-T. Chen, H. Jiang, T.-H. Chu, S.-N. Hsieh, J. C. Han, F. Patt, and W. Wilson, “W-band dual-polarization receiver for Array of Microwave Background Anisotropy (AMiBA),” Proc. of SPIE 5498-64, June 2004.
    連結:
  18. [30] N. L. Erickson, R. L. Grosslein, R. B. Erickson, S. Weinreb, “A cryogenic focal plan array for 85-115GHz using MMIC preamplifiers,” IEEE Trans. Microwave Theory Tech., vol. MTT-47, no. 12, pp. 2212-2219, Dec. 1999.
    連結:
  19. [31] M. W. Pospieszalski, E. J. Wollack, N. Bailey, D. Thacker, J. Webber, L. D. Nguyen, M. Le, and M. Lui, “Design and performance of wideband, low-noise, millimeter-wave amplifiers for Microwave Anisotropy Probe radiometers,” 2000 IEEE MTT-S Int. Microwave Symp. Dig., vol. 1, pp. 25-28, June 2000.
    連結:
  20. [33] Y.-L. Kok, H. Wang, M. Barsky, R. Lai, M. Sholley, and. B. Allen, “A 180-GHz monolithic sub-harmonic InP-based HEMT diode mixer,” IEEE Microwave and Guided Wave Letters, vol. 9, no. 12, pp. 529-531, Dec. 1999.
    連結:
  21. [35] P. S. Henry, B. S. Glance, and M. V. Schneider, “Local-oscillator noise cancellation in the subharmonically pumped down-converter,” IEEE Trans. Microwave Theory Tech., vol. MTT-24, no. 5, pp. 254-257, May 1976.
    連結:
  22. [36] M.T. Chen, Y.-J. Hwang, T.-H. Chu, S.C. Lu, K.Y. Lo, R.N. Martin, Huei Wang, M. Kesteven, M. Sinclair, W. Wilson, J. Payne, and J. Peterson, "Receiver for AMiBA: prototype concepts," The 2001 Asia-Pacific Radio Science Conf., Tokyo, Aug. 2001.
    連結:
  23. [37] S. Raman, F. Rucky and G. M. Rebeiz, “A high-performance W-band uniplanar subharmonic mixer,” IEEE Trans. Microwave Theory Tech., vol. MTT-45, no. 6, pp. 955-962, June 1997.
    連結:
  24. [39] Y.-C. Leong and S. Weinreb, “Full Band Waveguide-to-Microstrip Probe Transitions,” 1999 IEEE MTT-S Int. Microwave Symp. Dig., vol. 4, pp. 1435-1438, June 1999.
    連結:
  25. [41] Sonnet EM software.
    連結:
  26. [42] A. Madjar, “A novel general approach for the optimum design of microwave and millimeter wave subharmonic mixers,” IEEE Trans. Microwave Theory Tech., vol. MTT-44, no. 11, pp. 1997-1999, Nov. 1996.
    連結:
  27. [45] M. Ventresca and M. C. Tsai, “An active PsHEMT sub-harmonically pumped mixer,” 1994 IEEE MTT-S Int. Microwave Symp. Dig., pp.1641-1644, June 1999.
    連結:
  28. [47] M. J. Roberts, S. Iezekiel, and C. M. Snowden, “A W-band self-oscillating subharmonic MMIC mixer,” IEEE Trans. Microwave Theory Tech., vol. MTT-46, no. 12, pp. 2104-2108, Dec. 1998.
    連結:
  29. [48] M. Sironen, Y. Qian, and T. Itoh, “A subharmonic self-oscillating mixer with integrated antenna for 60-GHz wireless applications,” IEEE Trans. Microwave Theory Tech., vol. MTT-49, no. 3, pp. 442-449, Mar. 2001.
    連結:
  30. [50] P. A. Raffin, R. N. Martin, Y.-D. Huang, F. Patt, R. C. Romeo, M.-T. Chen, and J. S. Kingsley, “CFRP platform and hexapod mount for the Array of Microwave Background Anisotropy (AMiBA),” Proc. SPIE Int. Soc. Opt. Eng., vol. 5495, pp.159-167, Sep. 2004.
    連結:
  31. [51] C.-T. Li, D. Kubo, C. –C. Han, C. –C. Chen, M. –T. Chen, C. –H. Lien, H. Wang, R. –M. Wei, C. –H. Yang, T. –Z. chieh, “A wideband analog correlator system for AMiBA,” Proc. of SPIE Int. Soc. Opt. Eng., vol. 5498, pp. 455-461, Oct. 2004.
    連結:
  32. [52] M. W. Pospieszalski and E. J. Wollack, “Ultra-low-noise, InP field effect transistor radio astronomy receiver: state-of-art” Proc. of 13th Int. Conf. on Microwave, Radar and Wireless Comm., vol. 3, pp. 23-32, May 2000.
    連結:
  33. [53] M. W. Pospieszalski, W. J. Lakatosh, E. J. Wollack, L. D. Nguyen, M. Le, and M. Lui, and T. Liu, “Millimeter-wave waveguide-bandwidth cryogenically-coolable InP HEMT amplifiers,” 1997 IEEE MTT-S Int. Microwave Symp. Dig., vol.3, pp. 1285-1288, June 1997.
    連結:
  34. [54] S. Weinreb, R. Lai, N. Erickson, T. Gaier, and J. Wielgus, “W-band InP wideband MMIC LNA with 30K noise temperature,” 1999 IEEE MTT-S Int. Microwave Symp. Dig., vol. 1, pp. 101-104, June 1999.
    連結:
  35. [56] N. R. Erickson, “Very low loss wideband isolators for mm-wavelength,” 2001 IEEE MTT-S Int. Microwave Symp. Dig., vol.2, pp. 1175-1178, May 2001.
    連結:
  36. [58] O. A. Peverini, R. Tascone, A. Olivieri, M. Baralis, R. Orta, and G. Virone, “A microwave measurement procedure for full characterization of ortho-mode transducers,” IEEE Trans. Microwave Theory Tech., vol. MTT-51, no. 4, pp. 1207-1212, April 2003.
    連結:
  37. [59] S. Padin, J. K. Cartwright, M. C. Shepherd, J. K. Yamasaki, and W. L. Holzapfel, “A wideband analog correlator for microwave background observations,” IEEE Trans. Inst. Measur., vol. 50, no. 5, pp.1234-1240, Oct. 2001.
    連結:
  38. [60] A.-S. Liu, R.-B. Wu, and Y.-C. Yu, “A two-phase full-wave GA optimization for W-band image rejection waveguide filter design,” 2003 IEEE AP-S Int. Symp. Dig., vol. 2 , pp. 60-63, June 2003.
    連結:
  39. [61] M.T. Chen, S.H. Chang, C.C. Chin, T.-H. Chu, Shu-I. Hu, M.S. Hwang, Y.-J. Hwang, K.Y. Lo, R.N. Martin, P. Martin-Cocher, S.S Shen, S.C. Yang and M. J. Wang, "A progress report on the Submillimeter Array in Taiwan: the receiver system," Proc. of SPIE Int. Soc. Opt. Eng., vol. 4015, pp. 247-252, Aug. 2000.
    連結:
  40. [62] R. Blundell, C.-Y. E. Tong, D. C. Papa, R. L. Leombruno, X. Zhang; S. Paine, J. A. Stern, H. G. LeDuc, and B. Bumble, “A wideband fixed-tuned SIS receiver for 200-GHz operation,” IEEE Trans. Microwave Theory Tech., vol. MTT-43, no.4, pp. 933-937, April 1995.
    連結:
  41. [63] C.-Y. E. Tong, R. Blundell, S. Paine, D. C. Papa, J. Kawamura, Xiaolei Zhang, J. A. Stern, and H. G. LeDuc, “Design and characterization of a 250-350-GHz fixed-tuned superconductor-insulator-superconductor receiver,” IEEE Trans. Microwave Theory Tech., vol. MTT-44, no. 9, pp. 1548-1556, Sept. 1996.
    連結:
  42. [64] M. J. Wengler and D. P. Woody, “Quantum noise in heterodyne detection,” IEEE J. Quantum Electronics, vol. QE-23, no. 5, pp. 613-622, May 1987.
    連結:
  43. [68] J. E. Carlstrom, R. L. Plambeck and D. D. Thornton, “A continuously Tunable 65-115 GHz Gunn Oscillator,” IEEE Trans. Microwave Theory Tech., vol. MTT-33, no. 7, pp. 610-619, July 1985.
    連結:
  44. [70] Q. Ke and M. J. Feldman, “A technique for noise measurement of SIS receivers,” IEEE Trans. Microwave Theory Tech., vol. MTT42, no. 4, pp. 752-755, April 1994.
    連結:
  45. [72] D. P. Woody, “Measurement of the noise contribution to SIS heterodyne receivers,” IEEE Trans. Appl. Superconductivity, vol. 5, no.2, pp. 3312-3315, June 1995.
    連結:
  46. [78] A. D. Yaghjian, “Approximate formulas for the far field and gain of open-ended rectangular waveguide,” IEEE Trans. Antenna Propagat., vol. AP-32, no. 4, pp. 378-384, April 1984.
    連結:
  47. [87] T. Matsunaga, C.-Y. E. Tong, T. Noguchi, and R. Blundell, “Fabrication and characterization of a 600 GHz resonant distributed SIS junction for fixed-tuned waveguide receiver,” Proc. of Tweleveth Int. Symp. Space Terahertz Tech., pp. 571-580, Feb. 2001.
    連結:
  48. [88] A. M. Baryshev, H. van de Stadt, H. Schaeffer, R. Hesper, T. Zijlstra, M. Zuiddam, W. Wild, and L. de Jong, “Development of a 0.6 THz SIS receiver for ALMA,” Proc. of Tweleveth Int. Symp. Space Terahertz Tech., pp. 581-590, Feb. 2001.
    連結:
  49. [89] J. Mees, S. Crewell, H. Nett, G. de Lange, H. van de Stadt, J. J. Kuipers, and R. A. Panhuyzen, “ASUR – an airbone SIS receiver for atmospheric measurement of trace gas at 625 to 760GHz,” IEEE Trans. Microwave Theory Tech., vol. MTT-43, no. 11, pp. 2543-2548, Nov. 1995.
    連結:
  50. [94] T. Matsunaga ,C.-Y. E. Tong, R. Blundell, and T. Naguchi “A 600-700 GHz resonant distributed junction for a fixed-tuned waveguide receiver,” IEICE Trans. Electronics, vol. E85-C, pp. 738-741, March 2002.
    連結:
  51. [95] T. Matsunaga, C.-Y. E. Tong, R. Blundell, and T. Naguchi “Fabrication and characterization of a 600-720 GHz resonant distributed SIS junction for fixed-tuned waveguide receiver,” Proc. of Asia-Pacific Microwave Conf. 2001, pp. 403-406, Taipei, Taiwan, R.O.C., Dec. 2001.
    連結:
  52. [96] C.-Y. E. Tong, R. Blundell, K. G. Megerian, J. A. Stern, and H. G. LeDuc, “A 650 GHz fixed-tuned waveguide SIS distributed mixer with no integrated tuning circuit,” IEEE Trans. Appl. Superconductivity, vol. 13, no.2, pp.680-683, June 2003.
    連結:
  53. [98] D. D. King, "Measurement and interpretation of antenna scattering," Proc. IRE, vol. 37, pp. 770-777, July 1949.
    連結:
  54. [99] R. J. Garbacz, "Determination of antenna parameters by scattering cross-section measurements," Proc. Inst. Elect. Eng., vol. 111, no. 10, pp. 1679-1686, Oct. 1964.
    連結:
  55. [100] I. Appel-Hansen, “Accurate determination of gain and radiation patterns by radar cross-section measurements,” IEEE Trans. Antennas Propagat., vol. AP-27, pp. 640-646, Sept. 1979.
    連結:
  56. [101] J. J. H. Wang, C. W. Choi, and R. L. Moore, "Precision experimental characterization of the scattering and radiation properties of antennas," IEEE Trans. Antennas Propagat., vol. AP-30, pp. 108-112, Jan. 1982.
    連結:
  57. [102] W. Wiesbeck and E. Heidrich, "Wide-band multiport antenna characterization by polarimetric RCS measurement," IEEE Trans. Antennas Propagat., vol. AP-46, pp. 341-350, March 1998.
    連結:
  58. [103] K. Silvonen, “LMR 16 – a self-calibration procedure for a leaky network analyzer,” IEEE Trans. Microwave Theory Tech., vol. MTT-45, no. 7, pp. 1041-1049, July 1997.
    連結:
  59. [104] J. V. Bulter, D. K. Rytting, M. F. Iskander, R. D. Pollard, and M. V. Bossche, “16-term error model and calibration procedure for on-wafer network analysis measurements,” IEEE Trans. Microwave Theory Tech., vol. MTT-39, no. 12, pp. 2211-2217, Dec. 1991.
    連結:
  60. [105] T. J. Chen, T. H. Chu, and F. C. Chen, “A new calibration algorithm of wide-band polarimetric measurement systems,” IEEE Trans. Antennas Propagat., vol. AP-39, No. 8, pp. 1188-1192, Aug. 1991.
    連結:
  61. [106] W. Wiesbeck and D. Kahny, “Single reference, three target calibration and error correction for monostatic, polarimetric free space measurements,” Proc. of IEEE, vol. 79, no.10, pp. 1551-1558, Oct. 1991.
    連結:
  62. [107] A. R. Kerr, "Noise and Loss in Balanced and Subharmonically Pumped Mixers: Part I -- Theory," IEEE Trans. Microwave Theory Tech., vol. MTT-27, no. 12, pp. 938-943, Dec. 1979.
    連結:
  63. [108] A. R. Kerr, "Noise and Loss in Balanced and Subharmonically Pumped Mixers: Part II -- Application," IEEE Trans. Microwave Theory Tech., vol. MTT-27, no. 12, pp. 944-950, Dec. 1979.
    連結:
  64. [109] K. Itoh and M. Shimozawa, “Fundamental limitations of conversion Loss and output power on an even harmonic mixer with junction capacitance,” 2001 IEEE MTT-S Int. Microwave Symp. Dig., vol. 2, pp. 1333-1336, June 2001.
    連結:
  65. [110] K. Itoh, K. Tajima, K. Kawakami, O. Ishida and K. Mizuno, “Fundamental limitations on output power and conversion Loss of an even harmonic mixer in an up-conversion operation,” 1997 IEEE MTT-S Int. Microwave Symp. Dig., pp. 849-852, June 1997.
    連結:
  66. [111] K. Itoh, K. Kawakami, O. Ishida and K. Mizuno, “Unbalance effects of an antiparallel diode pair on the virtual local leakage in an even harmonic mixer,” 1998 IEEE MTT-S Int. Microwave Symp. Dig., pp. 857-860, June 1998.
    連結:
  67. [6] Radiometer Physics GmbH, Birkenmaarstrasse 10 53340 Meckenheim Germany. http://www.radiometerphysics.de/.
  68. [7] Wisewave Technologies, Inc., 3043 Kashiwa Street, torrence, CA 90505, USA. http://wisewave-inc.com/.
  69. [9] Japan Communication Equipment Co., Ltd. 7-4-12 Fukami-Nishi, Yamato- Shi, Kanagawa, Japan. http://www.nitsuki.com/.
  70. [10] C. Risacher, E. Sundin, V. P. Robles, M. Pantaleev, V. Belitsky, “Low noise and low power consumption cryogenic amplifiers for Onsala and Apex Telescopes,” Proc. of 12th GaAs Symp., pp. 375-378, October 2004.
  71. [11] C. Masson, E. Bloemhof, R. blundell, W. Bruckman, P. Ho, E. Keto, M. Levine, P. Raffin, M. Reid, and M. Wolfire, Design study for the submillimeter interferometer array of the Smithsonian Astrophysical Observatory, Feb. 1992.
  72. [14] S. Padin, M. C. Shepherd, J. K. Cartwright, R. G. Keeney, B. S. Mason, T. J. Pearson, A. C. S. Readhead, W. A. Schaal, J. Sievers, P. S. Udomprasert, J. K. Yamasaki, W. L. Holzapfel, J. E. Carlstrom, M. Joy, S. T. Myers, and A. Otarola, “The Cosmic Background Imager,” Pub. Astro. Soc. Pacific, vol. 114, pp. 83-97, Jan. 2002.
  73. [17] E. M. Leith, J. M. Kovac, C. Pryke, J. E. Carlstrom, N. W. Halverson, W. L. Holzapfel, M. Dragan, B. Reddall, and E. S. Sandberg, “ Measurement of polarization with the degree angular scale interferometer,” Nature, vol. 420, pp. 763-771, December 2002.
  74. [18] J. C. Webber, “ Selection of HFET or SIS mixer for ALMA band 3,” ALMA Memo #341, Jan. 2001. http://www.alma.nrao.edu/memos/html-memos/ alma341/ memo341.pdf
  75. [19] K. Y. Lo, “The current status of astronomy in Taiwan and AMiBA,” AMiBA 2001: High-Z Clusters, missing Baryons, and CMB Polarization, Astronomical Society of the Pacific Conference Series, vol. 257, pp. 3-12, ISBN 1-58381-097-8. Also see http://amiba.asiaa.sinica.edu.tw/.
  76. [25] M.-T. Chen, Y. –J. Hwang, W. Ho, H. Jiang, T.H. Chu, S.C. Lu and M. W. Sinclair, “ A full-polarization W-band receiver for CMB detection,” Proc. of SPIE 4855, Aug. 2002.
  77. [28] Y.-J. Hwang, M.-T. Chen, E. Chung, and T.-H. Chu, “A novel near field vector beam measurement system at 690 GHz,” Proc. of 34th European Microwave Conf., pp 557-560 Oct. 2004.
  78. [29] P. Kangaslahti, T. Gaier, D. Dawson, J. Tuovinen, T. Karttaavi, M. Lahdes, N. J. Hughes, T. L. Cong, P. Jukkala, P. Sjoman, and S. Weinreb, “Low noise amplifiers in InP technology for pseudo correlating millimeter wave radiometer,” 2001 IEEE MTT-S Int. Microwave Symp. Dig., vol.3, pp.1959-1962, June 2001.
  79. [32] H. Siegel, S. Weinreb, S. Duncan, W. Berk, A. Eskandarian and D.-W. Tu, “Design and measurement of a 210 GHz subharmonically pumped GaAs MMIC mixer,” 1992 IEEE MTT-S Int. Microwave Symp. Dig., vol. 1, pp. 43-46, June 1992.
  80. [34] Y.-L. Kok, P.-P. Huang, H. Wang, B.R. Allen, M. Sholley, T. Gaier and I. Mehdi, “120 and 60 GHz monolithic InP-based HEMT diode sub-harmonic mixer,” 1998 IEEE MTT-S Int. Microwave Symp. Dig., vol. 1, pp. 43-46, June 1998.
  81. [38] TRW foundry service handbook.
  82. [40] HP/EEsof harmonic balance analysis software
  83. [43] Private Communication with Dr. Yonghui Shu in Wisewave Technologies, Inc.
  84. [44] M. Kim, J. B. Hacker, E. A. Sovero, D. S. Deakin and J. H. Hong, “A millimeter-wave multifunction HEMT mixer,” IEEE Microwave and Guided Wave Letters, vol. 9, no. 4, pp.154-156, April 1999.
  85. [46] A. Schaefer, J.-M. Dortu, L. Klapproth, W. Stiebler, G. Boeck and W. Kellner, “77GHz PHFET-harmonic-mixer MMIC,” Proc. of 27th European Microwave Conf., vol. 2 , pp. 1070-1075, Oct.1997.
  86. [49] 0.15mm GaInAs pHEMT Power Device Model Handbook, WIN Semiconductors Corp., 2001.
  87. [55] E. J. Wollack, W. Grammer, J. Kingsley, “The Boifot orthomode junction,” NRAO ALMA Memo #425, National Radio Astronomical Observatory. http://www.alma.nrao.edu/memos/html-memos/alma425/memo425.pdf
  88. [57] Spacek Labs Inc., 212 East Gutierrez Street, Santa Barbara, California, USA 93101. http://www.spaceklabs.com/
  89. [65] G. de Lange, C. E. Honingh, J. J. Kuipers, H. H. A. Schaeffer, R. A. Panhuyzen, T. M. Klapwijk, H. van de Stadt, and M. M. W. M. de Graauw, “ Heterodyne mixing with Nb tunnel junctions above the gap grequency,” Appl. Phys. Lett., vol. 64, no. 22, pp. 3039-3041, May 1994.
  90. [66] S. C. Shi, C. C. Chin, M. J. Wang, W. L. Wang, W. L. Shan, W. Zhang, and T. Noguchi, “Development of a 600-720 GHz SIS Mixer for the SMART,” Proc. of the 12th Int. Symp. Space Terahertz Tech., pp. 215-222, Dec. 2001.
  91. [67] J. Lesurf, Millimeter-wave Optics, Devices and Systems, Chapter 9, Martin Puplett Interferometer, pp. 136-155 and Section 12.3 The Martin-Puplett Interferometer as a diplexer, pp. 224-231, Publisher: Adam Hilger, ISBN; 0-85274-1294, 1990.
  92. [69] A. Baryshev, R. Hesper, G. Gerlofsma, M. Kroug, W. Wild, “Influence of Temperature Variations on the Stability of a Submm Wave Receiver,” Proc. of Fourteenth Int. Symp. Space Terahertz Tech., Apr. 2003.
  93. [71] R. Blundell, R. E. Miller and K. H. Gundlach, “Understanding noise in SIS receivers,” Int. J. IR and MM Wave, vol. 12, pp. 1265-1273, 1991.
  94. [73] C.-Y. E. Tong, S. Paine and R. Blundell, "Near-field characterization of 2-D beam patterns of submillimeter superconducting receivers," Proc. of Fifth Int. Symp. Space Terahertz Tech., pp. 660-673, Apr. 1994.
  95. [74] M. T. Chen, C. E. Tong, L. Chen, S. Paine and R. Blundell, “Full-wave numerical modeling of near-field beam profiles at 200 and 700 GHz,” Proc. of Seventh Int. Symp. Space Terahertz Tech., pp. 369-378, March 1996.
  96. [75] M. T. Chen, C. E. Tong, S. Paine and R. Blundell, “Characterization of corrugated feed horns at 216 and 300 GHz,” Int. J. of IR and MM Waves, vol. 18, no. 9, pp. 1697-1711, Sept. 1997.
  97. [76] C.-Y. E. Tong, D. V. Meledin, D. P. Marrone, S. Paine, H. Gibson and R. Blundell, "Near-field vector beam measurement at 1 THz," IEEE Microwave Wireless Comp. Lett., vol. 13, no. 6, pp 235-237, June 2003.
  98. [77] Olison Microwave Laboratory.
  99. [79] Y. Fujino and C.-Y. E. Tong, “Analysis of an open-end waveguide as a probe for near field antenna measurement by using TLM method,” IEICE Trans. Commun., vol. E77-B, no. 8, pp. 1048-1055, Aug. 1994.
  100. [80] H. A. Haus, Waves and Fields in Optoelectronics, Chapter 5 Hermite-Gaussian Beams and Their Transformations, pp. 108-157, Publisher: Prentice-Hall, Inc.1984.
  101. [81] S. Paine, D. C. Papa, R. L. Leombruno, X. Zhang, and R. Blundell, “Beam waveguide and receiver optics for SMA,” Proc. of Fifth Int. Symp. Space Terahertz Tech., pp. 811-823, Apr. 1994.
  102. [82] S. Paine, “SMA Optics,” Submillimeter Array Project Book. http://sma-www. cfa.harvard.edu/private/eng_pool/spaine/proj_book_optics/proj_book_optics.html
  103. [83] W. R. McGrath, P. Febvre, P. Batelaan, H. G. LeDuc, B. Bumble, M. A. Frerking, and J. Hernichel, “A submillimeter-wave SIS receiver for 547GHz,” Proc. of Fourth Int. Symp. Space Terahertz Tech., pp. 50-58, March 1993.
  104. [84] M. Salez, P. Febvre, W. R. McGrath, B. Bumble, and H. G. LeDuc, “High frequency effects and performance of a 600-635GHz SIS receiver using Nb/AlOx/Nb junctions,” Proc. of Fifth Int. Symp. Space Terahertz Tech., pp. 109-124, Apr. 1994.
  105. [85] J.W. Kooi, C.K. Walker, H. G. LeDuc, P. L. Schaffer, and T. G. Phillips, “A low noise 565-735 GHz SIS waveguide receiver,” Proc. of Fifth Int. Symp. Space Terahertz Tech., pp. 126-141, Apr. 1994.
  106. [86] S. Glenz, S. Haas, C. E. Honingh, and K. Jacobs, “NbTiN based tuning structures for broadband Nb-Al2O3-Nb SIS mixers from 640-800GHz,” Proc. of Tweleveth Int. Symp. Space Terahertz Tech., pp.1-10, Feb. 2001.
  107. [90] C. E. Honingh, S. Haas, D. Hottgenroth, K. Jacobs, and J. Stutzki, ”Fixed tuned waveguide mixers around 450 GHz, 670 GHz and 810 GHz for a dual channel receiver,” Proc. of Seventh Int. Symp. Space Terahertz Tech., pp.63-75, March 1996.
  108. [91] J. W. Kooi, M. S. Chan, H. G. LeDuc, and T. G. Phillips, “A 665 GHz waveguide receiver using a tuned 0.5mm2 Nb/AlOx/Nb SIS tunnel junction,“ Proc. of Seventh Int. Symp. Space Terahertz Tech., pp. 76-85, March 1996.
  109. [92] J.W. Kooi, C.K. Walker, H.G. LeDuc, T.R. Hunter, D.J. Benford, and T.G. Phillips, “A low noise 665 GHz SIS quasi-particle waveguide receiver,” Int. J. IR and MM Waves, vol. 15, no. 3, pp. 477-492, 1994.
  110. [93] A. Baryshev, E. Lauria, R. Hesper, T. Zijlstra, and W. Wild , “Fixed-tuned waveguide 0.6 THz SIS mixer with wide band IF,” Proc. of Thirteenth Int. Symp. Space Terahertz Tech., pp. 1-10, Cambridge, Massachusetts, March 2002.
  111. [97] C.E. Honingh, M. Justen, R. Teipen, T. Tils, and K. Jacobs, “Mixer Development for HIFI Band 2 (640 – 800 GHz),” Proc. of Thirteenth Int. Symp. Space Terahertz Tech., pp. 337-338, Cambridge, MA, USA, March 2002.