Title

以微觀力學模型模擬超高溫複合陶瓷之潛變破壞

Translated Titles

Micromechanics Modeling of Creep Fracture of the Ultra-High Temperature Ceramic Composites

DOI

10.6342/NTU.2014.02365

Authors

游濟華

Key Words

超高溫陶瓷 ; 晶界相對滑動 ; 晶界孔隙產生 ; 晶界擴散 ; 潛變破壞 ; 潛變機制 ; UHTCs:grain boundary sliding ; grain boundary cavitation ; grain boundary diffusion ; creep fracture ; creep mechanism

PublicationName

臺灣大學土木工程學研究所學位論文

Volume or Term/Year and Month of Publication

2014年

Academic Degree Category

博士

Advisor

陳俊杉

Content Language

英文

Chinese Abstract

超高溫陶瓷是一可廣泛應用於高溫環境的耐火材料,其中ZrB2-SiC的複合陶瓷因其低密度與優異的高溫耐火性質,目前受到相當大的重視,然其高溫潛變破壞會限制其於高溫中之應用,是亟待解決的問題。許多實驗結果都指出ZrB2-SiC的複合陶瓷潛變抗性會隨著工作溫度的增加而減少,並發現當溫度高於1500 oC之後,其潛變機制由晶界擴散轉換為晶界滑移的破壞機制。最近的實驗觀察更指出在溫度高於1800 oC時,於ZrB2-SiC的ZrB2晶粒中觀察到差排的滑動,而SiC晶粒的變形行為則比較像剛體運動。 本論文的目的即為發展微觀力學理論模型,並透過有限元素計算模擬探討ZrB2-SiC複合陶瓷之潛變破壞與其微觀機制。由於潛變破壞牽涉到許多不同尺度的機制,其主要的微觀機制可以分為三種:晶界的擴散效應、晶粒本身的潛變與晶界間的相對滑移。因此本研究發展了一考慮晶界開裂,晶界相對滑動與晶粒潛變或差排滑動之微觀力學理論模型,以釐清超高溫陶瓷在不同溫度與不同材料組成之破壞機制與潛變行為。透過有限元素法,將其微觀力學模型實作在知名的商業軟體ABAQUS中。利用ABAQUS提供的使用者自訂材料(UMAT)分別實作描述等向性晶粒的潛變微觀力學模型,以及考慮差排滑動的晶體塑性力學去模擬晶粒的行為。另一方面我們利用ABAQUS中的使用者自訂元素(UEL)實作時變率相關之內聚力模型(CZM),以模擬晶界的滑動以及空孔生成與擴張行為。 我們首先考慮晶界的非均質性對潛變破壞的影響。在不考慮非等向性與非均質的ZrB2材料系統中,其材料的強度會受到應變率以及晶界的性質所影響,晶界的非均質性會導致裂痕生長,進而而造成潛變破壞。利用等向性的潛變模型(UMAT)模擬晶粒的行為,配合內聚力模型(UEL)來模擬晶界的特殊行為,如晶界的孔隙生成係數以及擴散係數,以及控制所外加的應變率,以了解晶界的非均質性對潛變破壞的影響。模擬結果顯示晶界的非均質性會降低材料的潛變抵抗能力。 我們接著考慮在沒有差排滑動的情況下,利用等向性的潛變模型(UMAT)模擬ZrB2與SiC晶粒的行為,配合內聚力模型(UEL)模擬ZrB2之間與ZrB2以及SiC之間的介面,以探討ZrB2與SiC複合陶瓷的潛變機制,當升溫超過1500 oC的情況下,ZrB2- SiC複合陶瓷的破壞行為將由晶界相對滑動所控制,模擬的結果指出,ZrB2- SiC之間的介面必須有空孔生成的能力,其晶粒滾動的現象將會大大的降低ZrB2- SiC複合陶瓷抵抗潛變的能力。 在溫度超過1800 oC的環境下,本研究使用能模擬材料塑性滑動的非等向性晶體塑性力學以模擬ZrB2與SiC晶粒的塑性行為,配合內聚力模型(UEL)模擬之ZrB2- SiC複合陶瓷間的晶界,以探討ZrB2與SiC複合陶瓷的潛變機制,本研究利用此一晶體塑性力學力學模擬,驗證幾何必要差排成形成為材料晶粒軟化的一種機制,模擬結果與實驗結果相當吻合,晶界的非均質性提供了一個較容易產生孔隙的位址,其亦為晶界滑動所必須的互補機制。模擬結果亦顯示出差排的產生是因為ZrB2與SiC之晶粒相對滑移產生的不諧和變形所造成的。

English Abstract

Ultra-high temperature ceramics has great applications as refectory materials at high temperature. ZrB2-SiC has been considered as an excellent candidate of the ultra-high temperature ceramics due to its relatively low density and excellent refractory ability. However, the creep fracture of ZrB2-SiC limits its potential utilities. To mediate the creep fracture is thus imperative. It has been concluded from several experiments that the creep resistance of ZrB2-SiC reduces when an elevated temperature increases. There also exists a transition region of creep resistance for temperature above 1500oC for ZrB2-SiC composites. Moreover, recent experiments have shown that above 1800oC, dislocations were observed within the ZrB2 grains but the SiC grains behaved like a rigid body. The thesis is aiming to develop a micromechanics model by means of finite element analysis to simulate the creep fracture and related deformation mechanisms. Since several length scales are involved in creep fracture, there are three major micromechanisms: grain creep, grain boundary diffusion and sliding. A micromechanics model considering grain boundary separation, grain boundary sliding and the creep or dislocation slip of grain was hence developed to simulate intergraunlar creep fracture of the ZrB2-SiC at elevated temperature in the present study. By finite element method, this micromechanics model was implemented in a commercial software ABAQUS. An isotropic creep deformation behavior and a crystal plastic model considering crystalline slip were implemented via ABAUQS UMAT, a user-defined material, for grains. For grain boundaries, a rate–dependent cohesive zone model was implemented using the user-defined element (UEL) in ABAQUS. The influence of creep resistance by the effect of grain boundary heterogeneity was studied first. The creep resistance of an isotropic, homogeneous ZrB2 polycrystalline material is affected by the applied strain rate and the grain boundary properties. Grain boundary heterogeneity would initiate the microcrack and thus lead to fracture. A polycrystalline model composed by grain interiors constituted by the isotropic creep (UMAT) and grain boundaries modeled by a rate-dependent cohesive zone model (UEL) was built to study the heterogeneity effect on grain boundary, e.g. grain boundary nucleation and diffusivity, and rate dependent effect on different applied strain rates was studied. Simulation results indicate that the grain boundary heterogeneity reduces the creep resistance for ZrB2 polycrystalline materials. Our focus then moved to the inhomogeneous grain aggregates without slip deformation. An isotropic grain interior modeled by UMAT along with the grain boundary simulated by a rate-dependent cohesive zone modeling (UEL) was constructed to study the creep fracture of ZrB2-20%SiC composites. The micromechanism of ZrB2-20%SiC composites when temperature is raised above 1500 oC is predominated by grain boundary sliding. Numerical results indicate that cavity nucleation at ZrB2-SiC interface is a necessary accommodation for grain boundary sliding. The phenomena of grain rotation jeopardize the creep resistance of ZrB2-20%SiC at high temperature region. An advanced micromechanics model which composed by crystal plasticity for grain interior and cohesive zone model for grain boundary was used to study the creep mechanism for ZrB2-SiC composites when temperature is above 1800oC. The slip deformation of ZrB2 grain is considered as a complementary mechanism for grain boundary sliding. The simulation results showed a good agreement with experimental EBSD data, such that the grain boundary heterogeneity provided a preferred site for cavity nucleation which is necessary to grain boundary sliding. The simulation results also revealed the dislocation was induced by an incompatible deformation nearby the ZrB2-SiC interface.

Topic Category 工學院 > 土木工程學研究所
工程學 > 土木與建築工程
Reference
  1. [1] D. Bashford, "A Review of Advanced Metallic and Ceramic Materials Suitable for High-Temperature Use in Space Structures," Acta Astronautica, vol. 22, pp. 137-144, 1990.
    連結:
  2. [3] J. S. Haggerty, J. L. O'Brien, and J. F. Wenckus, "Growth and characterization of single crystal ZrB2," Journal of Crystal Growth, vol. 3-4, pp. 291-294, 1968.
    連結:
  3. [5] K. Upadhya, J. M. Yang, and W. P. Hoffman, "Materials for ultrahigh temperature structural applications," American Ceramic Society Bulletin, vol. 76, pp. 51-56, 1997.
    連結:
  4. [9] T. Baldridge, M. C. Gupta, and C. N. Sun, "Nanostructures from zirconium diboride and alumina ceramics," Journal of the American Ceramic Society, vol. 93, pp. 2891-2896, 2010.
    連結:
  5. [10] T. H. Squire and J. Marschall, "Material property requirements for analysis and design of UHTC components in hypersonic applications," Journal of the European Ceramic Society, vol. 30, pp. 2239-2251, Aug 2010.
    連結:
  6. [11] W. J. Leombruno, J. S. Haggerty, and J. L. O'Brien, "Structure and orientation of the second phase in ZrB2 crystals," Materials Research Bulletin, vol. 3, pp. 361-368, 1968.
    連結:
  7. [13] S. Otani and Y. Ishizawa, "Preparation of ZrB2 single crystals by the floating zone method," Journal of Crystal Growth, vol. 165, pp. 319-322, 1996.
    連結:
  8. [14] M. M. Opeka, I. G. Talmy, E. J. Wuchina, J. A. Zaykoski, and S. J. Causey, "Mechanical, thermal, and oxidation properties of refractory hafnium and zirconium compounds," Journal of the European Ceramic Society, vol. 19, pp. 2405-2414, 1999.
    連結:
  9. [15] J. Sung, D. M. Goedde, G. S. Girolami, and J. R. Abelson, "Diffusion barrier characteristics of zirconium diboride films - Grown by remote plasma CVD," Materials Reliability in Microelectronics Ix, vol. 563, pp. 39-44, 1999.
    連結:
  10. [16] F. Monteverde, S. Guicciardi, and A. Bellosi, "Advances in microstructure and mechanical properties of zirconium diboride based ceramics," Materials Science and Engineering A, vol. 346, pp. 310-319, 2003.
    連結:
  11. [17] W. G. Fahrenholtz, G. E. Hilmas, I. G. Talmy, and J. A. Zaykoski, "Refractory diborides of zirconium and hafnium," Journal of the American Ceramic Society, vol. 90, pp. 1347-1364, May 2007.
    連結:
  12. [18] Y. Xuan, C. H. Chen, and S. Otani, "High temperature microhardness of ZrB2 single crystals," Journal of Physics D: Applied Physics, vol. 35, pp. L98-L100, 2002.
    連結:
  13. [19] A. L. Chamberlain, W. G. Fahrenholtz, G. E. Hilmas, and D. T. Ellerby, "High-strength zirconium diboride-based ceramics," Journal of the American Ceramic Society, vol. 87, pp. 1170-1172, Jun 2004.
    連結:
  14. [20] M. Romero De La Osa, R. Estevez, C. Olagnon, J. Chevalier, and C. Tallaron, "Cohesive zone model for intergranular slow crack growth in ceramics: Influence of the process and the microstructure," Modelling and Simulation in Materials Science and Engineering, vol. 19, 2011.
    連結:
  15. [21] M. Romero de la Osa, R. Estevez, C. Olagnon, J. Chevalier, L. Vignoud, and C. Tallaron, "Cohesive zone model and slow crack growth in ceramic polycrystals," International Journal of Fracture, vol. 158, pp. 157-167, 2009.
    連結:
  16. [22] S. Gangireddy, J. W. Halloran, and Z. N. Wing, "Non-contact mechanical property measurements at ultrahigh temperatures," Journal of the European Ceramic Society, vol. 30, pp. 2183-2189, 2010.
    連結:
  17. [23] P. Hu and Z. Wang, "Flexural strength and fracture behavior of ZrB2-SiC ultra-high temperature ceramic composites at 1800 °C," Journal of the European Ceramic Society, vol. 30, pp. 1021-1026, 2010.
    連結:
  18. [24] J. J. Melendez-Martı́nez, A. Domı́nguez-Rodrı́guez, F. Monteverde, C. Melandri, and G. de Portu, "Characterisation and high temperature mechanical properties of zirconium boride-based materials," Journal of the European Ceramic Society, vol. 22, pp. 2543-2549, 2002.
    連結:
  19. [25] R. Ponraj and S. R. Iyer, "A simple four-point bend creep testing apparatus for brittle ceramic materials," Journal of Materials Science Letters, vol. 11, pp. 1000-1003, 1992.
    連結:
  20. [27] G. D. Quinn and W. R. Braue, "Fracture mechanism maps for advanced structural ceramics - Part 2 Sintered silicon nitride," Journal of Materials Science, vol. 25, pp. 4377-4392, 1990.
    連結:
  21. [28] C. H. Hsueh and A. G. Evans, "Overview 14 Creep fracture in ceramic polycrystals-II. effects of inhomogeneity on creep rupture," Acta Metallurgica, vol. 29, pp. 1907-1917, 1981.
    連結:
  22. [29] J. R. Porter, W. Blumenthal, and A. G. Evans, "Overview 14 Creep fracture in ceramic polycrystals-I. creep cavitation effects in polycrystalline alumina," Acta Metallurgica, vol. 29, pp. 1899-1906, 1981.
    連結:
  23. [30] M. D. Thouless, C. H. Hsueh, and A. G. Evans, "A Damage Model of Creep Crack-Growth in Polycrystals," Acta Metallurgica, vol. 31, pp. 1675-1687, 1983.
    連結:
  24. [32] K. Hirano, T. Suzuki, A. Kamei, and F. Tamai, "Orientation dependence of fracture toughness and fatigue crack growth resistance for in-situ Al2O3/YAG eutectic composites," International Journal of Materials & Product Technology, vol. 16, pp. 276-283, 2001.
    連結:
  25. [33] I. G. Talmy, J. A. Zaykoski, and C. A. Martin, "Flexural creep deformation of ZrB2/SiC ceramics in oxidizing atmosphere," Journal of the American Ceramic Society, vol. 91, pp. 1441-1447, May 2008.
    連結:
  26. [34] Q. Liu, W. Han, X. Zhang, S. Wang, and J. Han, "Microstructure and mechanical properties of ZrB2-SiC composites," Materials Letters, vol. 63, pp. 1323-1325, 2009.
    連結:
  27. [35] O. N. Grigoriev, B. A. Galanov, V. A. Lavrenko, A. D. Panasyuk, S. M. Ivanov, A. V. Koroteev, et al., "Oxidation of ZrB2-SiC-ZrSi2 ceramics in oxygen," Journal of the European Ceramic Society, vol. 30, pp. 2397-2405, 2010.
    連結:
  28. [36] C. Hu, Y. Sakka, B. Jang, H. Tanaka, T. Nishimura, S. Guo, et al., "Microstructure and properties of ZrB2-SiC and HfB 2-SiC composites fabricated by spark plasma sintering (SPS) using TaSi 2 as sintering aid," Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi/Journal of the Ceramic Society of Japan, vol. 118, pp. 997-1001, 2010.
    連結:
  29. [37] J. K. Kurihara, T. Tomimatsu, Y. F. Liu, S. Q. Guo, and Y. Kagawa, "Mode I fracture toughness of SiC particle-dispersed ZrB2 matrix composite measured using DCDC specimen," Ceramics International, vol. 36, pp. 381-384, 2010.
    連結:
  30. [38] D. Gao, Y. Zhang, C. Xu, Y. Song, and X. Shi, "Atomic oxygen adsorption and its effect on the oxidation behaviour of ZrB2-ZrC-SiC in air," Materials Chemistry and Physics, vol. 126, pp. 156-161, 2011.
    連結:
  31. [40] F. Monteverde and A. Bellosi, "Effect of the addition of silicon nitride on sintering behaviour and microstructure of zirconium diboride," Scripta Materialia, vol. 46, pp. 223-228, 2002.
    連結:
  32. [41] F. Monteverde and R. Savino, "Stability of ultra-high-temperature ZrB2–SiC ceramics under simulated atmospheric re-entry conditions," Journal of the European Ceramic Society, vol. 27, pp. 4797-4805, 2007.
    連結:
  33. [43] M. Patel, J. J. Reddy, V. V. Bhanu Prasad, and V. Jayaram, "Strength of hot pressed ZrB2–SiC composite after exposure to high temperatures (1000–1700°C)," Journal of the European Ceramic Society, vol. 32, pp. 4455-4467, 12// 2012.
    連結:
  34. [44] S. Ran, S. G. Huang, O. Van der Biest, and J. Vleugels, "High-strength ZrB2-based ceramics prepared by reactive pulsed electric current sintering of ZrB2–ZrH2 powders," Journal of the European Ceramic Society, vol. 32, pp. 2537-2543, 8// 2012.
    連結:
  35. [45] D. Sciti, R. Savino, and L. Silvestroni, "Aerothermal behaviour of a SiC fibre-reinforced ZrB2 sharp component in supersonic regime," Journal of the European Ceramic Society, vol. 32, pp. 1837-1845, 2012.
    連結:
  36. [46] T. Venkateswaran, B. Basu, G. B. Raju, and D. Y. Kim, "Densification and properties of transition metal borides-based cermets via spark plasma sintering," Journal of the European Ceramic Society, vol. 26, pp. 2431-2440, 2006.
    連結:
  37. [47] J. Ramirez-Rico, M. A. Bautista, J. Martinez-Fernandez, and M. Singh, "Compressive strength degradation in ZrB2-based ultra-high temperature ceramic composites," Journal of the European Ceramic Society, vol. 31, pp. 1345-1352, 6// 2011.
    連結:
  38. [48] C. N. Sun, M. C. Gupta, and W. D. Porter, "Thermophysical properties of laser-sintered Zr-ZrB2 cermets," Journal of the American Ceramic Society, vol. 94, pp. 2592-2599, 2011.
    連結:
  39. [50] M. W. Bird, R. P. Aune, F. Yu, P. F. Becher, and K. W. White, "Creep behavior of a zirconium diboride–silicon carbide composite," Journal of the European Ceramic Society, vol. 33, pp. 2407-2420, 2013.
    連結:
  40. [51] E. Van Der Giessen and V. Tvergaard, "Development of final creep failure in polycrystalline aggregates," Acta Metallurgica Et Materialia, vol. 42, pp. 959-973, 1994.
    連結:
  41. [53] J. W. Kysar, "Experiments and simulations of directionally dependent fracture along copper/sapphire interfaces," Materials Research Society Symposium - Proceedings, vol. 539, pp. 299-311, // 1999.
    連結:
  42. [54] E. Vandergiessen and V. Tvergaard, "A Creep-Rupture Model Accounting for Cavitation at Sliding Grain-Boundaries," International Journal of Fracture, vol. 48, pp. 153-178, Apr 1 1991.
    連結:
  43. [58] P. Onck and E. van der Giessen, "Micromechanics of creep fracture: simulation of intergranular crack growth," Computational Materials Science, vol. 13, pp. 90-102, Dec 1998.
    連結:
  44. [59] P. Onck and E. Van Der Giessen, "Growth of an initially sharp crack by grain boundary cavitation," Journal of the Mechanics and Physics of Solids, vol. 47, pp. 99-139, 1998.
    連結:
  45. [61] D. Peirce, R. J. Asaro, and A. Needleman, "An analysis of nonuniform and localized deformation in ductile single crystals," Acta Metallurgica, vol. 30, pp. 1087-1119, // 1982.
    連結:
  46. [62] D. Peirce, R. J. Asaro, and A. Needleman, "Material rate dependence and localized deformation in crystalline solids," Acta Metallurgica, vol. 31, pp. 1951-1976, // 1983.
    連結:
  47. [63] D. Peirce, C. F. Shih, and A. Needleman, "A tangent modulus method for rate dependent solids," Computers and Structures, vol. 18, pp. 875-887, // 1984.
    連結:
  48. [66] R. Hill, "Generalized constitutive relations for incremental deformation of metal crystals by multislip," Journal of the Mechanics and Physics of Solids, vol. 14, pp. 95-102, 3// 1966.
    連結:
  49. [67] R. Hill, "The essential structure of constitutive laws for metal composites and polycrystals," Journal of the Mechanics and Physics of Solids, vol. 15, pp. 79-95, // 1967.
    連結:
  50. [68] M. F. Ashby, "Boundary Defects, and Atomistic Aspects of Boundary Sliding and Diffusional Creep," Surface Science, vol. 31, pp. 498-&, 1972.
    連結:
  51. [69] P. S. Kislyi and M. A. Kuzenkova, "Regularities of sintering of zirconium diboride-molybenum alloys," Soviet Powder Metallurgy and Metal Ceramics, vol. 5, pp. 360-365, 1966/05/01 1966.
    連結:
  52. [70] J. R. Rice, "Constraints on the Diffusive Cavitation of Isolated Grain-Boundary Facets in Creeping Polycrystals," Acta Metallurgica, vol. 29, pp. 675-681, 1981.
    連結:
  53. [71] P. Onck and E. Van Der Giessen, "Microstructurally-based modelling of intergranular creep fracture using grain elements," Mechanics of Materials, vol. 26, pp. 109-126, 1997.
    連結:
  54. [73] X. G. Jiang, J. C. Earthman, and F. A. Mohamed, "Cavitation and cavity-induced fracture during superplastic deformation," Journal of Materials Science, vol. 29, pp. 5499-5514, 1994.
    連結:
  55. [74] V. Tvergaard, "On the creep constrained diffusive cavitation of grain boundary facets," Journal of the Mechanics and Physics of Solids, vol. 32, pp. 373-393, 1984.
    連結:
  56. [75] A. H. Chokshi, "Cavity nucleation and growth in superplasticity," Materials Science and Engineering A, vol. 410-411, pp. 95-99, 2005.
    連結:
  57. [76] M. E. Kassner and T. A. Hayes, "Creep cavitation in metals," International Journal of Plasticity, vol. 19, pp. 1715-1748, 2003.
    連結:
  58. [77] A. Needleman and J. R. Rice, "Plastic creep flow effects in the diffusive cavitation of grain boundaries," Acta Metallurgica, vol. 28, pp. 1315-1332, 1980.
    連結:
  59. [78] S. B. Biner, "An analysis of grain boundary sliding and grain boundary cavitation in discontinuously reinforced composites," Acta Materialia, vol. 44, pp. 1813-1829, May 1996.
    連結:
  60. [79] D. Hull and D. E. Rimmer, "The growth of grain-boundary voids under stress," Philosophical Magazine, vol. 4, pp. 637-687, 1959.
    連結:
  61. [80] E. Van Der Giessen and V. Tvergaard, "On cavity nucleation effects at sliding grain boundaries in creeping polycrystals," Creep and Fracture of Engineering Materials and Structures, pp. 169-178, 1990.
    連結:
  62. [81] R. G. Pettit, C. S. Chen, A. R. Ingraffea, and C. Y. Hui, "Process zone size effects on naturally curving cracks," Engineering Fracture Mechanics, vol. 68, pp. 1181-1205, 2001.
    連結:
  63. [83] C. S. Chen, P. A. Wawrzynek, and A. R. Ingraffea, "A methodology for fatigue crack growth and residual strength prediction with applications to aircraft fuselages," Computational Mechanics, vol. 19, pp. 527-532, 1997.
    連結:
  64. [84] L. L. Zheng, Y. F. Gao, S. Y. Lee, R. I. Barabash, J. H. Lee, and P. K. Liaw, "Intergranular strain evolution near fatigue crack tips in polycrystalline metals," Journal of the Mechanics and Physics of Solids, vol. 59, pp. 2307-2322, 2011.
    連結:
  65. [85] M. Prechtel, P. L. Ronda, R. Janisch, A. Hartmaier, G. Leugering, P. Steinmann, et al., "Simulation of fracture in heterogeneous elastic materials with cohesive zone models," International Journal of Fracture, vol. 168, pp. 15-29, 2011.
    連結:
  66. [86] Y. F. Gao and A. F. Bower, "A simple technique for avoiding convergence problems in finite element simulations of crack nucleation and growth on cohesive interfaces," Modelling and Simulation in Materials Science and Engineering, vol. 12, pp. 453-463, May 2004.
    連結:
  67. [87] F. Q. Yang, "Creep due to grain boundary diffusion and grain boundary viscous flow," Journal of Physics D-Applied Physics, vol. 30, pp. 286-288, Jan 21 1997.
    連結:
  68. [88] ABAQUS 2012 V6.12 User's Manual, 2012.
    連結:
  69. [89] C.-H. Yu, C.-W. Huang, C.-S. Chen, Y. Gao, and C.-H. Hsueh, "Effects of grain boundary heterogeneities on creep fracture studied by rate-dependent cohesive model," Engineering Fracture Mechanics, vol. 93, pp. 48-64, 2012.
    連結:
  70. [90] G. Shu-Qi, "Densification of ZrB2-based composites and their mechanical and physical properties: A review," Journal of the European Ceramic Society, vol. 29, pp. 995-1011, 2009.
    連結:
  71. [93] C.-H. Yu, C.-W. Huang, C.-S. Chen, Y. Gao, and C.-H. Hsueh, "A micromechanics study of competing mechanisms for creep fracture of zirconium diboride polycrystals," Journal of the European Ceramic Society, vol. 33, pp. 1625-1637, 2013.
    連結:
  72. [94] B. P. Bird MW, White KW., "Grain Rotation and Translation Contribute Substantially to Flexure Creep of a Zirconium Diboride Silicon Carbide Composite," Acta Materialia, vol. submitted, 2014.
    連結:
  73. [95] D. Ghosh, G. Subhash, R. Radhakrishnan, and T. S. Sudarshan, "Scratch-induced microplasticity and microcracking in zirconium diboride–silicon carbide composite," Acta Materialia, vol. 56, pp. 3011-3022, 8// 2008.
    連結:
  74. [96] T. Mizuguchi, S. Guo, and Y. Kagawa, "Transmission electron microscopy characterization of spark plasma sintered ZrB2 ceramic," Ceramics International, vol. 36, pp. 943-946, // 2010.
    連結:
  75. [97] J. Zou, G.-J. Zhang, C.-f. Hu, T. Nishimura, Y. Sakka, J. Vleugels, et al., "Strong ZrB2-SiC-WC Ceramics at 1600°C," Journal of the American Ceramic Society, pp. n/a-n/a, 2012.
    連結:
  76. [98] J. Zou, G.-J. Zhang, C.-F. Hu, T. Nishimura, Y. Sakka, H. Tanaka, et al., "High-temperature bending strength, internal friction and stiffness of ZrB2–20 vol% SiC ceramics," Journal of the European Ceramic Society, vol. 32, pp. 2519-2527, 8// 2012.
    連結:
  77. [99] D. Ghosh, G. Subhash, and G. R. Bourne, "Room-temperature dislocation activity during mechanical deformation of polycrystalline ultra-high-temperature ceramics," Scripta Materialia, vol. 61, pp. 1075-1078, 12// 2009.
    連結:
  78. [100] M. Patel, V. Singh, J. J. Reddy, V. V. Bhanu Prasad, and V. Jayaram, "Densification mechanisms during hot pressing of ZrB2–20 vol.% SiC composite," Scripta Materialia, vol. 69, pp. 370-373, 9// 2013.
    連結:
  79. [102] J. W. Kysar and C. L. Briant, "Crack tip deformation fields in ductile single crystals," Acta Materialia, vol. 50, pp. 2367-2380, // 2002.
    連結:
  80. [103] J. W. Kysar, "Continuum simulations of directional dependence of crack growth along a copper/sapphire bicrystal interface. Part I: Experiments and crystal plasticity background," Journal of the Mechanics and Physics of Solids, vol. 49, pp. 1099-1128, // 2001.
    連結:
  81. [104] J. W. Kysar, "Continuum simulations of directional dependence of crack growth along a copper/sapphire bicrystal interface. Part II: Crack tip stress/deformation analysis," Journal of the Mechanics and Physics of Solids, vol. 49, pp. 1129-1153, // 2001.
    連結:
  82. [105] J. Liang, Y. Wang, and S. Meng, "Interface and defect characterization in hot-pressed ZrB2-SiC ceramics," International Journal of Refractory Metals and Hard Materials, vol. 29, pp. 341-343, // 2011.
    連結:
  83. [106] D. Ghosh, G. Subhash, and G. R. Bourne, "Inelastic deformation under indentation and scratch loads in a ZrB2-SiC composite," Journal of the European Ceramic Society, vol. 29, pp. 3053-3061, // 2009.
    連結:
  84. [107] M. A. Kuzenkova and P. S. Kislyi, "The mechanism of shrinkage of zirconium diboride during sintering," Soviet Powder Metallurgy and Metal Ceramics, vol. 5, pp. 114-121, 1966/02/01 1966.
    連結:
  85. [108] J. S. Haggerty and D. W. Lee, "Plastic Deformation of ZrB2 Single Crystals," Journal of the American Ceramic Society, vol. 54, pp. 572-576, 1971.
    連結:
  86. [109] S. Fujita, K. Maeda, and S. Hyodo, "Dislocation glide motion in 6H SiC single crystals subjected to high-temperature deformation," Philosophical Magazine A, vol. 55, pp. 203-215, 1987/02/01 1987.
    連結:
  87. [110] R. C. Gifkins, "Grain-boundary sliding and its accommodation during creep and superplasticity," Metallurgical Transactions A, vol. 7, pp. 1225-1232, 1976/08/01 1976.
    連結:
  88. [111] R. C. Gifkins, "Grain rearrangements during superplastic deformation," Journal of Materials Science, vol. 13, pp. 1926-1936, 1978/09/01 1978.
    連結:
  89. [112] C. Y. Hui and H. Riedel, "The asymptotic stress and strain field near the tip of a growing crack under creep conditions," International Journal of Fracture, vol. 17, pp. 409-425, 1981/08/01 1981.
    連結:
  90. [113] X. Li, Y. Wei, L. Lu, K. Lu, and H. Gao, "Dislocation nucleation governed softening and maximum strength in nano-twinned metals," Nature, vol. 464, pp. 877-80, Apr 8 2010.
    連結:
  91. [114] W. D. Nix and H. Gao, "Indentation size effects in crystalline materials: A law for strain gradient plasticity," Journal of the Mechanics and Physics of Solids, vol. 46, pp. 411-425, 1998.
    連結:
  92. [118] C. F. Niordson and J. W. Kysar, "Computational strain gradient crystal plasticity," Journal of the Mechanics and Physics of Solids, vol. 62, pp. 31-47, // 2014.
    連結:
  93. [2] L. Kaufman and E. V. Clougherty, "Investigation of boride compounds for very high temperature applications," ManLabs, Inc.1965.
  94. [4] S. R. Levine, E. J. Opila, M. C. Halbig, J. D. Kiser, M. Singh, and J. A. Salem, "Evaluation of ultra-high temperature ceramics for aeropropulsion use," Journal of the European Ceramic Society, vol. 22, pp. 2757-2767, 2002.
  95. [6] A. Bellosi, F. Monteverde, D. D. Fabbriche, and C. Melandri, "Microstructure and Properties of ZrB2-Based Ceramics," Journal of Materials Processing & Manufacturing Science, vol. 9, pp. 156-170, 2000.
  96. [7] R. Telle, L. S. Sigl, and K. Takagi, "Boride-based hard materials," Handbook of Ceramic Hard Materials, vol. 2, pp. 802-945, 2000.
  97. [8] Ronald Loehman, Erica Corral, Hans Peter Dumm, Paul Kotula, and R. Tandon, "Ultra high temperature ceramics for hypersonic vehicle applications," Sandia National Laboratories, Albuquerque, New Mexico 2006.
  98. [12] C. Mroz, "Zirconium Diboride," American Ceramic Society Bulletin, vol. 73, pp. 141-142, Jun 1994.
  99. [26] G. D. Quinn, "Fracture mechanism maps for advanced structural ceramics - Part 1 Methodology and hot-pressed silicon nitride results," Journal of Materials Science, vol. 25, pp. 4361-4376, 1990.
  100. [31] Y.-m. Chiang, D. P. Birnie, and W. D. Kingery, Physical ceramics. New York: J. Wiley, 1997.
  101. [39] S. C. Zhang, G. E. Hilmas, and W. G. Fahrenholtz, "Mechanical properties of sintered ZrB2–SiC ceramics," Journal of the European Ceramic Society, vol. 31, pp. 893-901, 2011.
  102. [42] S.-Q. Guo, T. Nishimura, T. Mizuguchi, and Y. Kagawa, "Mechanical properties of hot-pressed ZrB2–MoSi2–SiC composites," Journal of the European Ceramic Society, vol. 28, pp. 1891-1898, 2008.
  103. [49] I. G. Talmy, J. A. Zaykoski, and M. M. Opeka, "High-Temperature Chemistry and Oxidation of ZrB2Ceramics Containing SiC, Si3N4, Ta5Si3, and TaSi2," Journal of the American Ceramic Society, vol. 91, pp. 2250-2257, 2008.
  104. [52] A. F. Bower, Aplied Mechanics of Solids: Taylor & Francis Group, LLC, 2010.
  105. [55] P. R. Onck, B. N. Nguyen, and E. van der Giessen, "The linkage between microscopic cavitation damage and macroscopic crack growth," Journal of Engineering Materials and Technology-Transactions of the Asme, vol. 122, pp. 279-282, Jul 2000.
  106. [56] B. N. Nguyen, P. Onck, and E. Van der Giessen, "A homogenized microstructural approach to creep fracture," Comptes Rendus De L Academie Des Sciences Serie Ii Fascicule B-Mecanique, vol. 328, pp. 733-739, Oct 2000.
  107. [57] P. R. Onck and E. Van der Giessen, "Microstructural modelling of creep crack growth from a blunted crack," International Journal of Fracture, vol. 92, pp. 373-399, 1998.
  108. [60] G. I. Taylor, "Plastic Strain in Metals," Journal of the Institute of Metals, vol. 62, p. 307, 1937.
  109. [64] R. J. Asaro, "Crystal Plasticity," Journal of Applied Mechanics-Transactions of the Asme, vol. 50, pp. 921-934, // 1983.
  110. [65] R. J. Asaro and J. R. Rice, "Strain localization in ductile single crystals," Journal of the Mechanics and Physics of Solids, vol. 25, pp. 309-338, // 1977.
  111. [72] A. J. Perry, "Cavitation in creep," Journal of Materials Science, vol. 9, pp. 1016-1039, 1974.
  112. [82] C. S. Chen, R. Krause, R. G. Pettit, L. Banks-Sills, and A. R. Ingraffea, "Numerical assessment of T-stress computation using a p-version finite element method," International Journal of Fracture, vol. 107, pp. 177-199, 2001.
  113. [91] D. C. Montgomery, Design and analysis of experiments, 7th ed. Hoboken, NJ: Wiley, 2009.
  114. [92] J. L. Zhou and A. L. Tits, "Nonmonotone line search for minimax problems," Journal of Optimization Theory and Applications, vol. 76, pp. 455-476, 1993.
  115. [101] M. W. Birda, T. Ramptonb, D. Fullwoodb, P. F. Becher, and K. W. White, "Local Dislocation Creep Accommodation of a Zirconium
  116. Diboride Silicon Carbide Composite (Submitted)."
  117. [115] C.-S. Han, H. Gao, Y. Huang, and W. D. Nix, "Mechanism-based strain gradient crystal plasticity—I. Theory," Journal of the Mechanics and Physics of Solids, vol. 53, pp. 1188-1203, 2005.
  118. [116] C.-S. Han, H. Gao, Y. Huang, and W. D. Nix, "Mechanism-based strain gradient crystal plasticity—II. Analysis," Journal of the Mechanics and Physics of Solids, vol. 53, pp. 1204-1222, 2005.
  119. [117] Y. Huang, H. Gao, W. D. Nix, and J. W. Hutchinson, "Mechanism-based strain gradient plasticity—II. Analysis," Journal of the Mechanics and Physics of Solids, vol. 48, pp. 99-128, 2000.