Title

可重複使用之穀胱甘肽修飾矽奈米線場效應電晶體

Translated Titles

A Reusable Biosensor Using Glutathione-Modified Silicon Nanowire Field-Effect Transistor

DOI

10.6342/NTU.2009.02309

Authors

曾坤長

Key Words

矽奈米線 ; 場效應電晶體 ; 重複使用 ; 穀胱甘肽生物晶片 ; silicon nanowire ; field-effect transistor ; reusable ; glutathione ; biosensor

PublicationName

臺灣大學化學研究所學位論文

Volume or Term/Year and Month of Publication

2009年

Academic Degree Category

碩士

Advisor

陳逸聰

Content Language

繁體中文

Chinese Abstract

隨著奈米技術的演進,矽奈米線場效電晶體(silicon nanowire field-effect transistor, SiNW-FET)因其高靈敏度、免標定、可即時偵測等特性,被大量應用在研發為奈米生物感測器,近年來是許多學術團隊的熱門研究課題。此類生物感測器已成功的量測多種生物與醫學上的重要物質,包括:蛋白質、DNA、癌症標誌物、單一病毒的偵測,以及神經傳導物質等多項重要指標物,將來不論是在藥物開發上、還是生化物質快速偵測分析上,都非常具有研究潛力與應用價值。 傳統上,大部分此類的生物晶片,在修飾特定蛋白分子或是抗體時,都是以共價鍵結的方式,缺點有兩個:如果被修飾分子(probe)與被偵測分子(target)的作用是不可逆的,如抗體與抗原,那這個晶片只能使用一次;也因為probe是化學鍵結在晶片上,所以此類晶片一旦修飾後,只能做單一種類的分子偵測,兩種結果都會造成晶片的浪費。 本論文的研究主題為,建立一個可重複使用的生物晶片,因此,我們導入,一般在純化蛋白的技術上常用的穀胱甘肽(glutathione, GSH)與穀胱甘肽硫基轉移酶(glutathione S-transferase, GST)的系統。由於GSH與GST之間具有適中的作用力(Kd ~106),可進行重複的結合(association)與分離(dissociation),將其應用於SiNW-FET,便能作為可重複修飾使用蛋白分子的生物感測器。經由化學分析電子光譜、螢光實驗、原子力顯微鏡與電性量測的實驗,我們的確成功在單一晶片上,進行蛋白分子的重複修飾,而達到重複使用的目的,且能更進一步地偵測蛋白質與蛋白質之間的作用,將來極具有潛力與應用價值,發展為可快速篩選可能作用蛋白的系統平台,或是應用在偵測蛋白與DNA、RNA、醣類等其他生化分子的作用。

English Abstract

Over past years, the silicon nanowire field-effect transistors (SiNW-FETs) as chemical and biological sensors have attracted wide attention because of their merits of free labeling, ultrasensitivity, and real-time recording. There are many applications of SiNW-FETs, such as immuno-protein detection, DNA hybridization, virus detection, etc. However, most of applications are based on an irreversible functionalization of receptor molecules on the surface of SiNW-FETs. Consequently, one chip that could only be used for a single time to detect one protein is very wasteful in chip-consuming. Glutathione-S-transferase (GST) is widely applied to fuse with a target protein by genetic engineering in protein purification. The GST-fused protein can be separated from a lysate by the glutathione-coated beads via its high affinity for glutathione (GSH). Based on the reversible association-dissociation of GSH-GST, we provide a novel strategy of using a reusable GSH modified SiNW-FET to immobilize a GST-fusion protein and then to screen possible interacting proteins. The reversible surface-functionalization method is proven by ESCA, fluorescence imaging, atomic force microscopic imaging, and electrical measurements. The reversible GSH-GST functionality on the SiNW-FET has made this device consecutively reusable, allowing for quantitative analysis. In this work, we have successfully demonstrated that the reusability of GSH-functionalized device should be a very useful and economic biosensor. This reversible surface functionalized biosensor can potentially serve as a fast high-throughput screening platform for detecting proteins which could possibly interact with a particular GST-fused protein, and also be further applied to study biomolecular associations, such as protein-protein interactions, protein-DNA interactions, protein-carbohydrate interactions, and other similar interactions.

Topic Category 基礎與應用科學 > 化學
理學院 > 化學研究所
Reference
  1. (2) Bergveld, P.; Wiersma, J.; Meertens, H. IEEE Trans. Biomed. Eng. 1976, 23, 136-144.
    連結:
  2. (5) Lichtenberger, J.; Fromherz, P. Biophys. J. 2007, 92, 2262-2268.
    連結:
  3. (6) He, B.; Morrow, T. J.; Keating, C. D. Curr. Opin. Chem. Biol. 2008, 12, 522-528.
    連結:
  4. (7) Wanekaya, A. K.; Chen, W.; Myung, N. V.; Mulchandani, A. Electroanal. 2006, 18, 533-550.
    連結:
  5. (8) Wang, J. Analyst 2005, 130, 421-426.
    連結:
  6. (9) Allen, B. L.; Kichambare, P. D.; Star, A. Adv. Mater. 2007, 19, 1439-1451.
    連結:
  7. (10) Wang, C. W.; Pan, C. Y.; Wu, H. C.; Shih, P. Y.; Tsai, C. C.; Liao, K. T.; Lu, L. L.; Hsieh, W. H.; Chen, C. D.; Chen, Y. T. Small 2007, 3, 1350-1355.
    連結:
  8. (18) Wagner, R. S.; Ellis, W. C. Appl. Phys. Lett. 1964, 4, 89-90.
    連結:
  9. (20) Lin, M. C.; Chu, C. J.; Tsai, L. C.; Lin, H. Y.; Wu, C. S.; Wu, Y. P.; Wu, Y. N.; Shieh, D. B.; Su, Y. W.; Chen, C. D. Nano Lett. 2007, 7, 3656-3661.
    連結:
  10. (21) Patolsky, F.; Zheng, G.; Lieber, C. M. Nanomedicine 2006, 1, 51-65.
    連結:
  11. (29) Hermanson, G. T. Bioconjugate techniques; Academic Press: San Diego, 1996.
    連結:
  12. (30) Sies, H. Free Radical Bio. Med. 1999, 27, 916-921.
    連結:
  13. (35) Nat. Methods 2004, 1, 275-276.
    連結:
  14. (38) Lin, S. P.; Chen, J. J. J.; Liao, J. D.; Tzeng, S. F. Biomed. Microdevices 2008, 10, 99-111.
    連結:
  15. (39) Beamson, G.; Briggs, D. Mol. Phys. 1992, 76, 919-936.
    連結:
  16. (40) Beamson, G.; Briggs, D. High resolution XPS of organic polymers: The scienta ESCA300 database, 1992.
    連結:
  17. (42) Taylor, T. N. J. Mater. Res. 1989, 4, 189-203.
    連結:
  18. (44) Lequin, R. M. Clin. Chem. 2005, 51, 2415-2418.
    連結:
  19. (1) Bergveld, P.; Sibbald, A. Analytical and biomedical applications of ion-selective field-effect transistors; Elsevier: Amsterdam ; New York, 1988.
  20. (3) Offenhausser, A.; Knoll, W. Trends Biotechnol. 2001, 19, 62-66.
  21. (4) Wrobel, G.; Seifert, R.; Ingebrandt, S.; Enderlein, J.; Ecken, H.; Baumann, A.; Kaupp, U. B.; Offenhausser, A. Biophys. J. 2005, 89, 3628-3638.
  22. (11) Zaitsev, A. M.; Levine, A. M.; Zaidi, S. H. Phys. Status Solidi A. 2007, 204, 3574-3579.
  23. (12) Zhao, Y. L.; Hu, L. B.; Stoddart, J. F.; Gruner, G. Adv. Mater. 2008, 20, 1910-1915.
  24. (13) Bunimovich, Y. L.; Shin, Y. S.; Yeo, W. S.; Amori, M.; Kwong, G.; Heath, J. R. J. Am. Chem. Soc. 2006, 128, 16323-16331.
  25. (14) Cheng, M. M. C.; Cuda, G.; Bunimovich, Y. L.; Gaspari, M.; Heath, J. R.; Hill, H. D.; Mirkin, C. A.; Nijdam, A. J.; Terracciano, R.; Thundat, T.; Ferrari, M. Curr. Opin. Chem. Biol. 2006, 10, 11-19.
  26. (15) Fang, Y.; Patolsky, F.; Lieber, C. M. Biophys. J. 2007, 551A-551A.
  27. (16) Hahm, J.; Lieber, C. M. Nano Lett. 2004, 4, 51-54.
  28. (17) Patolsky, F.; Zheng, G. F.; Lieber, C. M. Nat. Protoc. 2006, 1, 1711-1724.
  29. (19) Stern, E.; Klemic, J. F.; Routenberg, D. A.; Wyrembak, P. N.; Turner-Evans, D. B.; Hamilton, A. D.; LaVan, D. A.; Fahmy, T. M.; Reed, M. A. Nature 2007, 445, 519-522.
  30. (22) Patolsky, F.; Zheng, G. F.; Lieber, C. M. Anal. Chem. 2006, 78, 4260-4269.
  31. (23) Cui, Y.; Wei, Q. Q.; Park, H. K.; Lieber, C. M. Science 2001, 293, 1289-1292.
  32. (24) Zhang, G. J.; Zhang, G.; Chua, J. H.; Chee, R. E.; Wong, E. H.; Agarwal, A.; Buddharaju, K. D.; Singh, N.; Gao, Z. Q.; Balasubramanian, N. Nano Lett. 2008, 8, 1066-1070.
  33. (25) Zheng, G. F.; Patolsky, F.; Cui, Y.; Wang, W. U.; Lieber, C. M. Nat. Biotechnol. 2005, 23, 1294-1301.
  34. (26) Patolsky, F.; Zheng, G. F.; Hayden, O.; Lakadamyali, M.; Zhuang, X. W.; Lieber, C. M. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 14017-14022.
  35. (27) Zheng, G. F.; Patolsky, F.; Lieber, C. M. Abstr. Pap. Am. Chem. Soc. 2005, 230, U306-U307.
  36. (28) Patolsky, F.; Timko, B. P.; Yu, G. H.; Fang, Y.; Greytak, A. B.; Zheng, G. F.; Lieber, C. M. Science 2006, 313, 1100-1104.
  37. (31) Udomsinprasert, R.; Pongjaroenkit, S.; Wongsantichon, J.; Oakley, A. J.; Prapanthadara, L.; Wilce, M. C. J.; Ketterman, A. J. Biochem. J. 2005, 388, 763-771.
  38. (32) Glatz, Z.; Psotova, J.; Janiczek, O.; Chroust, K.; Jowet, T. J. Chromatogr. B 1997, 688, 239-243.
  39. (33) Smith, D. B.; Corcoran, L. M. Current Protocols in Molecular Biology; John Wiley & Sons: New York, 1994.
  40. (34) Smith, D. B.; Johnson, K. S. Gene 1988, 67, 31-40.
  41. (36) Chen, L. H.; Choi, Y. S.; Park, J. W.; Kwon, J.; Wang, R. S.; Lee, T.; Ryu, S. H. Bull. Kor. Chem. Soc. 2004, 25, 1366-1370.
  42. (37) Halik, M.; Klauk, H.; Zschieschang, U.; Schmid, G.; Dehm, C.; Schutz, M.; Maisch, S.; Effenberger, F.; Brunnbauer, M.; Stellacci, F. Nature 2004, 431, 963-966.
  43. (41) Crist, B. V. Handbook of Monochromatic XPS Spectra: Semiconductors; John Wiley and Sons, Chichester, 2000.
  44. (43) Liao, J. D.; Lin, S. P.; Wu, Y. T. Biomacromolecules 2005, 6, 392-399.
  45. (45) Ibrahim, S.; Joddar, B.; Craps, M.; Ramamurthi, A. Biomaterials 2007, 28, 825-835.
  46. (46) Stern, E.; Wagner, R.; Sigworth, F. J.; Breaker, R.; Fahmy, T. M.; Reed, M. A. Nano Lett. 2007, 7, 3405-3409.
  47. (47) Sano, T.; Smith, C. L.; Cantor, C. R. Science 1992, 258, 120-122.