Title

多晶藍寶石基板之抗反射膜層設計研究

Translated Titles

Investigating on the Antireflection Design of Poly crystal sapphire

DOI

10.6342/NTU201704141

Authors

羅立翔

Key Words

多晶藍寶石 ; 氧化矽 ; 蛾眼結構 ; 穿透率 ; 抗反射光學薄膜 ; Poly crystal sapphire ; SiOx ; Moth eye structure ; Transmittance ; Antireflection

PublicationName

臺灣大學應用力學研究所學位論文

Volume or Term/Year and Month of Publication

2017年

Academic Degree Category

碩士

Advisor

廖洺漢

Content Language

繁體中文

Chinese Abstract

過去藍寶石基板一直是昂貴的材料,製程時間長且良率低,基於以上因素使得藍寶石基板在市場上的競爭力不如強化玻璃,但現今發展出可以製造出價格較有優勢的多晶的藍寶石玻璃,製程時間大幅降低,良率大幅提升也可製成較大的尺寸,最重要的是,能夠降低50%甚至更多的成本,使得讓藍寶石基板成為智慧型手機面板,的議題再度被拋出,但多晶藍寶石有一大特性就是他的散射表現明顯,光穿透表現較單晶體藍寶石基板略低,在此研究,我們利用SiOx-Poly crystal sapphire-SiOx結構成功的將穿透率從83.3%提升92%,也將霧度從49.98%降低到40.16% 加上藍寶石基板本身超高硬度的特性,使藍寶石在手機蓋板發展上又更具優勢。

English Abstract

Over the past years, sapphire substrate has been an expensive material. Its production is time-consuming and the yield rate is low. To date, there is a developed manufacturing process which is capable of producing poly crystal sapphire. It not only dramatically reduces the time of its production, but also increases its yield rate. Moreover, it is also available for bigger size. Most important of all, the production cost could be reduced more than 50% and its applicability on the touch panels of mobile phones becomes an issue worthy of further investigation due to this new manufacturing process. In this study, we make use of the structure of SiOx/Poly crystal sapphire(CMP)/SiOx to successfully improve the transmittance of poly crystal sapphire CMP from 83.3% to 92% and reduce the haze from 49.98% to 40.16%. In addition, the high level of hardness of sapphire substrate makes it a great advantage in its development of the screens of smart mobile phones

Topic Category 基礎與應用科學 > 物理
工學院 > 應用力學研究所
Reference
  1. [1] Samsonov, G. V. (2012). Handbook of the Physicochemical Properties of the Elements. Springer Science & Business Media.
    連結:
  2. Samsonov, G. V. (2012). Handbook of the Physicochemical Properties of the Elements.
    連結:
  3. [3] Quirk, M., & Serda, J. Semiconductor manufacturing technology, 2001. and, 464, 436.
    連結:
  4. [4] Xiao, H. (2001). Introduction to Semiconductor Manufacturing Technology. 2001. p515-516, 9.
    連結:
  5. [5] 黃崧芥. (2014). 磁性電容中不同方向與大小磁矩對介電性質提升之研究. 臺灣大學機械工程學研究所學位論文, 1-111.
    連結:
  6. [8] Xiao, H. (2001). Introduction to Semiconductor Manufacturing Technology. 2001. p515-516, 9.
    連結:
  7. [9] B. J. Hockey, “Plastic Deformation of Aluminum Oxide by Indentation and Abrasion” , Journal of the American Ceramic Society , 54(1971) 223.
    連結:
  8. [10] P. F. Becher, ”Abrasive Surface Deformation of Sapphire”, Journal of the American Ceramic Society, 59 (1976) 143.
    連結:
  9. [12] 王啟晉. (2006). 藍寶石單晶生長之研究.臺灣大學化學工程學研究所學位論文, 1-66.
    連結:
  10. [14] H. Kopetsch, “Numerical simulation of the interface inversion in Czochralski growth of oxide crystals”,Journal of Crystal Growth,102(1990) 505.
    連結:
  11. [15] T. Tsukada, M. Hozawa, and N. lmaishi, “Effect of interface inversion on thermal stress field in CZ crystal growth of oxide”, Journal of Chemical Engineering of Japan, 23 (1990) 3286.
    連結:
  12. [16] J. J. Derby and Q. Xiao, “Some effects of crystal rotation on large scale Czochralski oxide growth analysis via a hydrodynamic thermal-Capillary model “, Journal of Crystal Growth, 113 (1991) 575.
    連結:
  13. [18] Chen, J. M., Simons, J. K., Tan, K. H., & Rosenberg, R. A. (1993). Correlation between interatomic distances and the X-ray-absorption near-edge structure of single-crystal sapphire. Physical Review B, 48(14), 10047.
    連結:
  14. [19] S. K. Hong, B. J. Kim, H. S. Park, Y. Park, S. Y. Yoon and T. I. Kim, “Evaluation of nanopipes in MOCVD grown(0001)GaN/Al2O3 by wet chemical etching”, Journal of Crystal Growth, 191 (1998) 275.
    連結:
  15. [20] T. Mukai and M. Senoh, “Candela-class high-brightness In GaN/AlGaN double-heterostructure blue- light- emitting diodes”, Applied Physics Letters, 64 (1994) 1687.
    連結:
  16. [21] J.A. Savage, “Reparation and properties of hard crystalline materials for optical applications”, Journal of Crystal Growth, 113 (1991) 689.
    連結:
  17. [22] D. C. Harris, “Infrared window and dome materials”, SPIE Optical Engineering Press(1992).
    連結:
  18. [23] Chen et al, “Method of making thermal shock resistant sapphire for IR Windows and Domes”, U.S. Patent. (1997) 5,702,654.
    連結:
  19. [24] Xiao, H. (2001). Introduction to Semiconductor Manufacturing Technology. 2001. p515-516, 9.
    連結:
  20. [25] J. Czochralski, Journal of Physics Chemistry, 91 (1918) 219.
    連結:
  21. [26] D. Viechnicki and F. Schmid, “Crystal growth using the heat exchanger method(HEM) ”, Journal of Crystal Growth, 26 (1974) 162.
    連結:
  22. [27] J. W. Xu, Y. Z. Zhou, G. G. Zhou, K. Xu, P. Z. Deng and J. Xu, “Growth of large-sized sapphire boules by temperature gradient technique(TGT) ” , Journal of Crystal Growth, 193 (1998) 123.
    連結:
  23. [28] A. Horowitz, S. Biderman, G. Ben Amar, U. Laor, M. Weiss and A.Stern, “Growth of single crystals of optical materials via the gradient solidification method”, Journal of Crystal Growth, 85 (1987) 215.
    連結:
  24. [29] E. Nicklaus and F. Fischer, “The Growth of single crystals of optical materials via the gradient solidification method”, Journal of Crystal Growth, 12 (1972) 337.
    連結:
  25. [30] K. Michael, “Feed assembly for Furnaces which utilize the Verneuil single-crystal Growth technique “, Review of Scientific nstruments,33 (1962) 1293.
    連結:
  26. [31] G. K. Teal and J. B. Little, “Growth of Germanium Single crystals“,Physical Review, 78 (1950) 647.
    連結:
  27. [33] S. Brandon, D. Gazit and A. Horowitz, “Interface shapes and thermal fields during the gradient solidification method growth of sapphire single crystals“, Journal of Crystal Growth, 167 (1996) 190.
    連結:
  28. [34] B.Cockayne, M. Chesswas and D. B. Gasson, “Single-Crystal Growth of Sapphire“, Journal of materials science, 2 (1967) 7.
    連結:
  29. [35] F. Schmid, M. B. Smith and C. P. Khattak, “Current status of sapphire dome production“, SPIE, 2 (1994) 2286.
    連結:
  30. [36] J. C. Chen and C. W. Lu, “Influence of the crucible geometry on the shape of the melt-crystal interface during growth of sapphire crystal using a heat exchanger method“, Journal of Crystal Growth, 266 (2004) 239.
    連結:
  31. [40] Born, M., & Wolf, E. (1959). Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffaction of Light. Pergamon Press.
    連結:
  32. [41] Tolansky, S. (1970). Multiple-beam interferometry of surfaces and films. Dover Publications.
    連結:
  33. [43] Lu, Jong-Hong, et al. "Antireflection coatings with SiOx–TiO2 multilayer structures." Japanese Journal of Applied Physics 53.11S (2014): 11RA06.
    連結:
  34. [44] K Hadob´as et al., “Reflection properties of nanostructure-arrayed silicon surfaces”, Nanotechnology 11 (2000) 161–164.
    連結:
  35. [45] Y C Chang et al., “Design and fabrication of a nanostructured surface combining antireflective and enhanced-hydrophobic effects”,Nanotechnology 18 (2007) 285303.
    連結:
  36. [46] 陳政元, & 孫建文. (2008). 利用合成氧化鋅奈米柱陣列與奈米壓印製作抗反射層並應用於太陽能電池 (Doctoral dissertation).
    連結:
  37. [47] Yoshiaski KANAMORI et al., “Broadband Antireflection Gratings for Glass Substrates Fabricated by Fast Atom Beam Etching”, Jpn. J. Appl.Phys. Vol.39 (2000) pp.735-737.
    連結:
  38. [48] Gong-Ru Lin et al., “ Low refractive index Si nanopillars on Si substrate”,Appl. Phys. Lett. 90, 181923 (2007).
    連結:
  39. [49] Chih-Hung Sun et al., “Broadband moth-eye antireflection coatings on silicon”, Appl. Phys. Lett. 92, 061112 (2008).
    連結:
  40. [50] Chou, S. Y., Krauss, P. R., & Renstrom, P. J. (1995). Imprint of sub‐25 nm vias and trenches in polymers. Applied physics letters, 67(21), 3114-3116.
    連結:
  41. [51] Karen Forberich et al. “Performance improvement of organic solar cells with moth eye anti-reflection coating”, Thin Solid Films 516 (2008)7167–7170.
    連結:
  42. [52] Chia-Jen Ting et al., “Low cost fabrication of the large-area anti-reflection films from polymer by nanoimprint/hot-embossing technology”,Nanotechnology 19 (2008) 205301.
    連結:
  43. [55] Kenji Sogo et al., “Reproduction of fine structures by nanocasting lithography” Microelectron. Eng. 84 (2007) 909–911.
    連結:
  44. [2] Cordua, W. S. (1998). The hardness of minerals and rocks. Lapidary Digest.
  45. [6] 楊宸,” 磁性複合薄膜中垂直磁矩對介電性質提升之研究”,台灣大學,碩士論文,(2013)
  46. [7] 張勁燕. (2005). 半導體製程設備. 五南圖書出版股份有限公司.
  47. [11] Dobrovinskaya, E. R., Lytvynov, L. A., & Pishchik, V. (2009). Sapphire: material, manufacturing, applications. Springer Science & Business Media
  48. [13] F. Schemid, C. Khattak and D. Feilt, “Producing large Sapphire for Optical Applications”, American Ceramic Society bulletin, 73 (1994) 39.
  49. [17] 呂中偉,以熱交換器法生長氧化鋁單晶之模擬分析,國立中央大學 機械工程研究所 博士論文,民國91 年7 月。
  50. [32] G. K. Teal and E. Buehler, “Semiconductor“, Physical Review, 87(1952) 190.
  51. [37] Nassau, K., & Nassau, J. (2004). Dr. AVL Verneuil and the synthesis of ruby and sapphire. 50 Years Progress in Crystal Growth: A Reprint Collection, 9.
  52. [38] Mitchell, R. S. (1965). After‐Heater Furnace for Verneuil Crystal Growing Technique. Review of Scientific Instruments, 36(11), 1667-1668. Lu, Jong-Hong, et al. "Antireflection coatings with SiOx–TiO2 multilayer structures." Japanese Journal of Applied Physics 53.11S (2014): 11RA06.
  53. [39] 張哲瑋. (2006). PMMA 基材上奈米結構製作與抗反射光學性質之研究 (Doctoral dissertation).
  54. [42] 羅振偉. (2015). 透光導電基板最佳化研究.明志科技大學材料工程研究所學位論文,民國104 年7 月。
  55. [53] 羅丞曜.(2001). 銦鋅氧化膜基本特性及其與氮化鎵接觸應用之研究. PhD Thesis. National Central University. [54]
  56. [56] http://www.wikiwand.com/zh-mo/%E5%8F%AF%E8%A7%81%E5%85%89