透過您的圖書館登入
IP:3.17.28.48
  • 學位論文

酞花青與聯吡啶釕錯合物染料共敏化現象之於染料敏化太陽能電池的應用與探討

Study and Application of Co-sensitization by Phthalocyanato and Bipyridyl Ruthenium Dye for Dye-Sensitized Solar Cells

指導教授 : 陳兆勛
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究的主要目的是探討染料共敏化現象在染料敏化太陽能電池中的影響。 以DSSC而言,光電轉換效率取決於染料可吸收的光波長範圍以及電子轉移速率。一般DSSC使用的染料主要光吸收範圍約在400nm-600nm,在紅光區的吸收表現便已呈疲態。因此本研究欲利用混摻染料以達到延伸吸收光波長範圍,進而提昇DSSC的效率。 實驗上選用了常見的聯吡啶釕錯合物染料N3(cis-di(thiocyanato)-bis (2,2'-bipyridyl-4,4'-dicarboxylic acid)-ruthenium(II),Ru(dcbpy)2(SCN)2)以及主要吸收波段為紅光區的酞花青染料(bis(3,4-dicarboxypyridine)-(phthalocyanato) ruthenium(II),PcRu(dcpy)2)混摻製作共敏化DSSC。合成N3與PcRu(dcpy)2兩種染料並在其中加一層Al2O3薄膜以期增加染料吸附量,兼顧延伸吸收光波段與染料吸附量。 然而由實驗結果可以發現PcRu(dcpy)2與N3的能階並不合適,前者的EHOMO過高使得電洞的傳遞受到阻礙而無法形成迴路。

並列摘要


The main purpose of this research is to study co-sensitization in the dye-sensitized solar cell (DSSC) . As DSSC, photon-to-electron conversion efficiency is depend on the range of wavelength dye absorbs and the rate of electron shift from dye to electrode. The dye used in DSSC generally absorb light with 400nm-600nm in wavelength for the most of part while light-absorption is weak beyond 600nm. In this study, therefore, blending dyes is for extending the range of light absorption and improving the efficiency of DSSC further. The common ruthenuim complex, N3 (cis-di(thiocyanato)-bis(2,2'-bipyridyl -4,4'-dicarboxylic acid)-ruthenium(II),Ru(dcbpy)2(SCN)2), and phthalcyano ruthenium complex, bis(3,4-dicarboxypyridine)-(phthalocyanato) ruthenium(II),PcRu(dcpy)2, which mainly absorb red radiation zone are chosen to fabricate co-sensitized DSSC. In order to taking both extension of light absorption and increasing adsporption of dyes, a layer of Al2O3 thin-film is inseted into synthsyized N3 and PcRu(dcpy)2. However, the results reveal that the energy band of PcRu(dcpy)2與N3 can not macth. EHOMO of the former is too high to obstruct the shifting of holes so that the circurt is cutted.

參考文獻


1 Gratzel, Michael, Photoelectrochemical cells. Nature 414 (6861), 338 (2001).
2 Markvart, T., Solar Electricity, 2nd ed. (John Wiley & Sons, 2000).
4 D. M. Chapin, C. S. Fuller, G. L. Pearson, A new silicon p-n junction photocell for converting solar radiation into electrical power. Journal of Applied Physics 25, 676 (1954).
6 Jenny, D. A., Loferski, J. J., and Rappaport, P., Photovoltaic Effect in GaAs p-n Junctions and Solar Energy Conversion. Physical Review 101 (3), 1208 (1956).
7 Stoger, M. et al., Investigation of defect formation and electronic transport in microcrystalline silicon deposited by hot-wire CVD. Physica B: Condensed Matter 273-274, 540 (1999).

延伸閱讀