透過您的圖書館登入
IP:18.224.32.86
  • 學位論文

吡啶類保護之金奈米粒子的合成及催化反應之應用

The Synthesis and Catalytic Application of Pyridinyl Groups Protecting Gold Nanoparticles

指導教授 : 劉緒宗

摘要


金奈米粒子雖然早在十九世紀就被科學家法拉第觀察到,但一直 到1980 年代電子顯微鏡普及後對其型態及催化方面應用才有長足的 進步。本論文主要在合成一系列末端修飾氫硫基 (thiol) 的聯吡啶、吡啶類化合物,並使用這些化合物為保護劑以兩相法製備金奈米粒子,另以紫外光-可見光光譜、穿透式電子顯微鏡鑑定金奈米粒子之表面電漿共振吸收 (SPR band)、粒子大小及分散度。 利用金奈米粒子表面的吡啶類基團為配位基與鈀、釕等過渡金屬 配位,發現過渡金屬配位會對金奈米粒子造成不同程度的聚集並使表 面電漿共振吸收峰減弱,另一方面金奈米粒子的存在對於Rubpy 的燐光發光特性也有消減 (quenching) 及轉移的效果。 最後以這些金奈米粒子為催化劑致力於一級醇選擇性氧化反應的研究,結果顯示吡啶類化合物保護之金奈米粒子在純氧的環境中氧化苯甲醇為苯甲醛具有良好的催化活性,並歸納得知小分子保護之金奈米粒子 (PYSH@Au NPS) 雖然具有較好的催化活性,但對於酸鹼度改變之抵抗性及不同取代基反應物的容忍度皆不如樹枝狀分子保護之金奈米粒子 (G1@Au NPS) 來得優異。 另嘗試以兩相法製備金、鈀合金奈米粒子,並發現合金粒子比單 一金屬粒子在氧化反應方面具有較好的催化活性。

並列摘要


Gold nanoparticle was firstly discovered by Faraday in 1857, but the knowledge of morphology and catalytic applications on these nanoparticles have not been developed until Transmission Electron Microscopy (TEM) was widely used in 1980s. We have synthesized a series of pyridinyl and bipyridinyl thiols as protecting agents to prepare gold and ruthenium nanoparticles. These nano particles were characterized by UV-Vis spectroscopy and TEM. These pyridinyl or bipyridinyl thiols protected nanoparticles were used as multiple dentates for transition metal complexes particularly with ruthenium (Ru) and palladium (Pd). Thus, coordination with metal ions took place on the surface of gold nanoparticles. It was found that the nanoparticles aggregrated upon the complexation, which led to the decrease of the intensity on surface plasma resonance band. As for the ruthenium bipyridinyl complexes on gold surface, its phosphorescence was quenched. Gold nanoparticles with different modified surfactants do affect the particle size, diversity, dispersity, stability, as well as acid-and-base resistance, which are discussed. The activity of the dentric protective gold nanoparticles in various catalytic reactions was screened. In particular, nanoparticles with pyridinyl-thiol groups protected appeared to be active on the conversion of benzyl alcohol into benzaldehyde in the presence of molecular oxygen.

參考文獻


56. Tzeng, B. C.; Chan, S. C.; Chan, M. C. W.; Che, C. M.;
69. Link, S.; Wang, Z. L.; El-Sayed, M. A. J. Phys. Chem. B
20. Haruta, M.; Tsubota, S.; Kobayashi, T.; Kageyama, H.;
3. Kubo, R. J. Phys. Soc. Jp. 1962, 17, 975.
4. (a) Wood, R. W. Philos. Mag. 1902, 4, 396.

延伸閱讀