Title

間位-二苯乙烯胺衍生物之合成與光誘導分子內電荷轉移性質之研究

Translated Titles

Synthesis and Photoinduced Intramolecular Charge Transfer of trans-3-Aminostilbenes

DOI

10.6342/NTU.2007.01567

Authors

李俊誼

Key Words

間位二苯乙烯胺 ; 分子內電荷轉移 ; 扭轉分子內電荷轉移 ; 3-aminostilbenes ; ICT ; TICT ; 3,4-N,N-dimethylaminostilbene

PublicationName

臺灣大學化學研究所學位論文

Volume or Term/Year and Month of Publication

2007年

Academic Degree Category

碩士

Advisor

楊吉水

Content Language

繁體中文

Chinese Abstract

本論文之目的為合成一系列間位-二苯乙烯胺化合物,並用以研究其光誘導分子內電荷轉移之行為。根據我們先前的研究,反式-4-二苯乙烯胺化合物在激發態時會有分子內電荷轉移(ICT)的現象,且其ICT的可能構形有兩種,平面ICT(PICT)與扭轉ICT(TICT)(圖1-35),由N-苯基上的取代基來決定。例如,取代基為 -OMe 或 -CN 時,在極性溶劑中屬TICT構形,具低螢光量子產率。PICT具有較大之電子非定域化作用,TICT具有較大之分子偶極矩,需在極性溶劑中才能與PICT競爭。 為了了解間位效應對於ICT性質之影響,我們設計一系列不同取代基的反式-3-(N-苯基)二苯乙烯胺的化合物。比較其與對位化合物的光化學行為。我們發現化合物m1OM和m1Me有TICT的行為,m1CN則無,其中m1Me和m1CN在激發態的光化學行為,分別與p1Me和p1CN有明顯的不同。相較於對位N-苯基取代,間位的化合物因共軛性質較差,由ICT往TICT能階活化能的大小也有所差異。同樣的,我們也可以藉由限制C-N鍵的旋轉(m1MeB3和m1OMB3),來證明m1OM與m1Me的TICT的行為。   我們也針對3,4’-DDS的衍生物其光化學行為做探討。由文獻資料顯示,3,4’-DDS可能具有TICT的行為。但經由我們重新量測並配合化合物34DDSB3與34DDSB4,我們發現此類化合物均無TICT的行為。但當我們引入強推電子基 –OMe 分別在間位與對位胺基時,化合物便具有TICT的行為。   另外,我們也成功的合成了化合物DNSB2,此化合物的合成相較於其他二苯乙烯胺衍生物有較高的困難度。雖然我們限制了在styryl-anilino C-C鍵的旋轉,此化合物在極性溶劑中仍然呈現TICT的行為。

English Abstract

This thesis is about the synthesis and the photoinduced intramolecular charge transfer (ICT) behavior of a series of trans-3-aminostilbenes. We recently reported that trans-4-(N-aryl-amino)stilbenes undergo ICT in the excited state. The ICT state of trans-4-(N-arylamino)-stilbenes could be planar (PICT) or twisted (TICT), depending on the substituent in the N-phenyl group. For instance, when the substituent is 4-OMe or 4-CN, a TICT state is present. The TICT state formation leads to low fluorescence quantum yields. Whereas a PICT state is favored by the electron delocalization effect, a TICT state possesses a larger dipole moment and gains better solvation in polar solvents. We have designed a series of trans-3-(N-arylamino)stilbenes to investigate the meta effect on ICT properties and compare with the corresponding para isomers. The results show that m1OM and m1Me undergo TICT formation, but m1CN doesn’t. The distinct propensity of torsional motion toward TICT between the para and meta isomers of 1CN and 1Me are due to the difference in intramolecular charge delocalization ability. On the basis of the ring-bridged model compounds m1MeB3 and m1OMB3, the TICT state for m1OM and m1Me results from the twisting of the stilbenyl-anilino C-N bond. We have also investigated the photochemical behavior of 3,4’-DDS and its derivatives. According to the data in literature, 3,4’-DDS might have a TICT state. However, through the reexamination of the data and investigation of the related compounds 34DDSB3 and 34DDSB4, we conclude that these diaminostilbenes do not undergo TICT state formation. However, those having the N-(4-methoxy)phenyl group (D3AAS and AA3DS) display the TICT behavior. Moreover, we have synthesized compound DNSB2. The synthesis of DNSB2 is more difficult compared to that of the other aminostilbenes. The results show that restriction of the twisting of the styryl-anilino C-C bond does not inhibit TICT formation in polar solvents.

Topic Category 基礎與應用科學 > 化學
理學院 > 化學研究所
Reference
  1. (2)Rotkiewicz, K.; Grellmann, K. H.; Grabowski, Z. R. Chem. Phys. Lett. 1973, 19, 315-318.
    連結:
  2. (7)Rettig, W. Angew. Chem., Int. Ed. Engl. 1986, 25, 971-988.
    連結:
  3. (12)Wermuth, G.; Rettig, W. J. Phys. Chem. 1984, 88, 2729.
    連結:
  4. (13)Rettig, W.; Gleiter, R. J. Phys. Chem. 1985, 89, 4676.
    連結:
  5. (15)Rettig, W. J. Phys. Chem. 1982, 86, 1970.
    連結:
  6. (16)Lakowicz, J. R. Principles of Fluorescence Spectroscopy, Plenum, New York, 1999, Chaper 6
    連結:
  7. (17)Waldeck, D. H. Chem. Rev. 1991, 91, 415-436
    連結:
  8. (18)Saltiel, J. J. Am. Chem. SOC. 1967, 89, 1036
    連結:
  9. (20)Demange, L. Chem. Rev. 2003, 103, 2475-2532
    連結:
  10. (24)Muszkat, K. A.; Fischer, E. J. Chem. SOC. B 1967, 662
    連結:
  11. (26)Irie, M. Chem. Rev. 2000, 100, 1685-1716
    連結:
  12. (27)Frigoli, M.; Mehl, G. H. Angew. Chem. Int. Ed. 2005, 44, 5048
    連結:
  13. (29)Compton, E. M.; Lewis F. D. Photochem. Photobiol. Sci. 2004, 3, 660-668
    連結:
  14. (30)Gegiou, D.; Muszkat, K. A.; Fischer, E. J. Am. Chem. Soc. 1968, 90, 12
    連結:
  15. (31)Gegiou, D.; Muszkat, K. A.; Fischer, E. J. Am. Chem. Soc. 1968, 90, 3907
    連結:
  16. (32)Gornoer, H.; Schulte-Frohlinde, D. J. Phys. Chem. 1979, 83, 3107
    連結:
  17. (34)Dyck, R. H.; McClure, D. S. J. Chem. Phys. 1962, 36, 2326
    連結:
  18. (37)Rettig, W.; Majenz, W. Chem. Phys. Lett. 1989, 154, 335
    連結:
  19. (38)Lewis, F. D.; Kalgutkar, R. S.; Yang, J. S. J. Am. Chem. Soc. 1999, 121, 12045-12053
    連結:
  20. (41)Yang, J.-S.; Chiou, S.-Y.; Liau, K.-L. J. Am. Chem. Soc. 2002, 124, 2518
    連結:
  21. (42)Jaffe, H. H.; Orchin, M. Theory and Applications of UltraViolet Spectrocopy; John Wiley and Sons: New York, 1962.
    連結:
  22. (44)Gusten, H.; Klasinc, L. Tetrahedron Lett. 1968, 26, 3097.
    連結:
  23. (45)Yang, J.-S.; Liau, K.-L.; Wang, C.-M. ; Hwang, C.-Y. J. Am. Chem. Soc. 2004, 126, 12325-12335
    連結:
  24. (49)Yang, J.-S.; Liau, K.-L.; Hwang, C.-Y.; Wang, C.-M. J. Phys. Chem. A 2006, 110, 8003-8010
    連結:
  25. (51)Lewis, F. D.; Kalgutkar, R. S.; Yang, J.-S. J. Am. Chem. Soc. 1999, 121, 12045-12053.
    連結:
  26. (55)Lee, B. H.; Marvel, C. S. J. Polym. Sci. Chem. Ed. 1982, 20, 393.
    連結:
  27. Acc. Chem. Res. 1979, 12, 146.
    連結:
  28. (59)Littke, A. F.; Fu, G. C. Angew. Chem. Int. Ed. 2002, 41, 4176-4211
    連結:
  29. (63)Newman, M.; Boden, H. J. Org. Chem. 1961, 26, 2525.
    連結:
  30. (66)Lai, G; Anderson, W. K. Tetrahedron 2000, 56, 2583.
    連結:
  31. (67)Borch, R. F.; Hassid, A. I. J. Org. Chem. 1972, 37, 1673.
    連結:
  32. (74)Li, S.-S.; Black, W. C.; Chan, C.-C.; Gauthier, J.-Y.; Gordon, R.; Guay, D. J. Med. Chem. 1995, 38, 4897-4905.
    連結:
  33. (75)Hartmann, R. W.; Ulmschneider, S.; Ursula, M.-V.; Mitrenga, M.; Sandrine, O.-M.; Klein, C. D.; Bureik, M.; Bernhardt, R.; Antes, I.; Lengauer, T. J. Med. Chem. 2005, 48, 1796-1805.
    連結:
  34. (87)Mader, M. M. et al. Bioorg. Med. Chem. Lett. 2005, 15, 617–620.
    連結:
  35. 參考資料
  36. (1)Turro, N. J. Modern Molecular Photochemistry, University Science Books Press: Sausalito, California, 1991.
  37. (3)Lippert, E.; Luder, W.; H. Boos; in: A. Mangini (Ed.), Advances in Molecular Spectroscopy, Pergamon Press, Oxford, 1962, p. 443.
  38. (4)(a) Sobolewski, A. L.; Domcke, W. Chem. Phys. Lett. 1996, 250, 428-436. (b) Sobolewski, A. L.; Domcke, W. Chem. Phys. Lett. 1996, 259,119-127.
  39. (5)Schuddeboom, W.; Jonker, S. A.; Warman, J. M.; Leinhos, U.; Kuぴhnle, W.; Zachariasse, K. A. J. Phys. Chem. 1992, 96, 10809-10819.
  40. (6)(a) Demeter, A.; Zachariasse, K. A. Chem. Phys. Lett. 2003, 380, 699-703. (b) Zachariasse, K. A.; Druzhinin, S. I.; Bosch, W.; Machinek, R. J. Am.Chem. Soc. 2004, 126, 1705-1715.
  41. (8)Rettig, W.; Bliss, B.; Dirnbreger, K. Chem. Phys. Lett. 1999, 305, 8-14
  42. (9)Rettig, W.; Wermuth, G. J. Photochem. 1985, 28, 351-366
  43. (10)(a) Bonacic-Koutecky, V.; Kohler, J.; Michl, J. Chem. Phys. Lett. 1984, 104, 440 (b) Bonacic-Koutecky, V.; Michl, J. J. Am. Chem. SOC. 1985, 107, 1765 (c) Grabowski, Z. R.; Dobkowski, J. Pure Appl. Chem. 1983, 55, 245.
  44. (11)Lippert, E.; Ayuk, A. A.; Rettig, W.; Wermuth, G. J. Photochem. 1981, 17, 237
  45. (14)Rotkiewicz, K.; Rubaszewska, W. Chem. Phys. Lett. 1980, 70, 444.
  46. (19)Champagne, B. B.; Pfanstiel, J. F.; Plusquellic, D. F.; Pratt, D. W.; van Herpen, W. M.; Meerts, W. L. J. Phys. Chem. 1990, 94, 6
  47. (21)Saltiel, J.; Ganapathy, S.; Werking, C. J. Phys. Chem. 1987, 91, 2755
  48. (22)(a) Saltiel, J.; Waller, A. S.; Sears, D. F., Jr.; Hoburg, E. A.; Zeglinski, D.M.; Waldeck, D. H. J. Phys. Chem. 1994, 98, 10689-10698. (b) Saltiel, J.; Waller, A. S.; Sears, D. F., Jr.; Garrett, C. Z. J. Phys. Chem. 1993, 97, 2516-2522.(c) Saltiel, J., Sun, Y.-P. Photochromism, Molecules and Systems; Durr, H., Bouas-Laurent, H., Eds.; Elsevier: Amsterdam, 1990; pp 64-164.(d) Saltiel, J.; Charlton, J. L. Rearrangements in Ground and Excited States, de Mayo, P., Ed.; Academic Press: New York, 1980; Vol. 3, pp 25-89.
  49. (23)Mallory, F. B.; Mallory, C. W. Org. React. 1984, 30, 1
  50. (25)Mallory, F. B.; Mallory, C. W. Organic Reactions; Wiley: New York, 1983; Vol. 30, p 1
  51. (28)Irie, M.; Sakemura, K.; Okinaka, M.; Uchida, K. J. Org. Chem. 1995, 60, 8305
  52. (33)Malkin, S.; Fischer, E. ibid. 1964, 68, 1153
  53. (35)(a) Gorner, H. Ber. Bunsen.-Ges. Phys. Chem. 1984, 88, 1199 (b) Gorner, H.; Schulte-Frohlinde, D. Ibid. 1208. (c) Ibid. 1978, 82, 1102. (d) Schulte-Frohlinde, D.; Gorner, H. Pure Appl. Chem. 1979, 51, 279
  54. (36)(a)Gruen, H.; Gorner, H. Z. Naturorsch. 1983, 38A, 929. (b)Gorner, H.; Gruen, H. J. Photochem. 1985, 28, 329(c)Gruen, H.; Gorner, H. J. Phys. Chem. 1989, 93, 7144
  55. (39)(a) Bedworth, P. V.; Cai, Y.; Jen, A.; Marder, S. R. J. Org. Chem. 1996, 61, 2242-2246.(b) Verbiest, T.; Burland, D. M.; Jurich, M. C.; Lee, V. Y.; Miller, R. D.; Volksen, W. Science 1995, 268, 1604-1606. (c) Gilmour, S.; Montgomery, R. A.; Marder, S. R.; Cheng, L.-T.; Jen, A. K.-Y.; Cai, Y.; Perry, J. W.; Dalton, L. R. Chem. Mater. 1994, 6, 1603-1604. (d) Marder, S. R.; Perry, J. W. Science 1994, 263, 1706-1707.
  56. (40)(a) Adachi, C.; Tsutsui, T.; Saito, S. Appl. Phys. Lett. 1990, 56, 799-801.(b) Adachi, C.; Tsutsui, T.; Saito, S. Appl. Phys. Lett. 1990, 56, 531-533.(c) Adachi, C.; Tsutsui, T.; Saito, S. Appl. Phys. Lett. 1989, 55, 1489-1491.
  57. (43)Kim, S. K.; Courtney, S. H.; Fleming, G. R. Chem. Phys. Lett. 1989, 159, 543 and references therein.
  58. (46)Letard, J.-F.; Lapouyade, R.; Rettig W. J. Am. Chem. Soc. 1993, 115, 2441-2447.
  59. (47)(a) Rettig, W.; Majenz, W. Chem. Phys. Lett. 1989, 154, 335-341. (b)Lapouyade, R.; Czeschka, K.; Majenz, W.; Rettig, W.; Gilabert, E.; Rulliere, C. J. Phys. Chem. 1992, 96, 9643-9650. (c) Abraham, E.; Oberle, J.; Jonusauskas, G.; Lapouyade, R.; Rulliere, C. J. Photochem. Photobiol. A: Chem. 1997, 105, 101-107. (d) Papper, V.; Pines, D.; Likhtenshtein, G.; Pines, E. J. Photochem. Photobiol. A: Chem. 1997, 111, 87-96. (e)Abraham, E.; Oberle, J.; Jonusauskas, G.; Lapouyade, R.; Rulliere, C. Chem. Phys. 1997, 214, 409-423. (f) Pines, D.; Pines, E.; Rettig, W. J. Phys. Chem. A 2003, 107, 236-242.
  60. (48)曾群凱,具架橋之反式-4-(N-芳基)-二苯乙烯胺的光化學行為之研究,國立中央大學碩士論文,2004,p48-49
  61. (50)(a) Gruen, H.; Gorner, H. J. Phys. Chem. 1989, 93, 7144-7152. (b) Lapouyade, R.; Kuhn, A.; Letard, J.-F.; Rettig, W. Chem. Phys.Lett. 1993, 208, 48-58.
  62. (52)Yang, J.-S.; Liau, K.-L.; Tu, C.-W.; Hwang, C.-Y. J. Phys. Chem. A 2005, 109, 6450-6456
  63. (53)Lewis, F. D.; Weigel, W. J. Phys. Chem. A 2000, 104, 8146-8153
  64. (54)Lewis, F. D.; Weigel, W.; Zuo, X. J. Phys. Chem. A 2001, 105, 4691-4696
  65. (56)Wadsworth, W. S.; Emmons, W. D. J. Am. Chem. Soc. 1960, 83, 1732.
  66. (57)廖康廩,取代基效應對反式-4-(N-苯基)二苯乙烯胺之光化學行為影響之研究,國立中央大學碩士論文,2002,p27-31
  67. (58)(a) Dieck, H. A.; Heck, R. F. J. Am. Chem. Soc. 1974, 96, 1133. (b) Heck, R. F.
  68. (60)Amatore, C.; Jutand, A. Acc. Chem. Res. 2000, 33, 314-321
  69. (61)Wolf, J. P.; Wagaw, S.; Marcoux, J.-F.; Buchwald, S. L. Acc. Chem. Res. 1998, 31, 805-818.
  70. (62)Ikan, R.; Rapaport, E. Tetrahedron 1967, 23, 3823-3827.
  71. (64)Old, D. W.; Harris, M. C.; Buchwald, S. L. Org. Lett. 2000, 2, 1403
  72. (65)Furst, A.; Berlo, R. C; Hooton, S. Chem. Rev. 1965, 65, 51-68.
  73. (68)Giumanini, A. G.; Chiavari, G.; Musiani, M. M.; Rossi, P. Synthesis 1980, 743
  74. (69)Gribble, G. W.; Hoffman, J. H. Synthesis 1977, 859
  75. (70)Singh, S. K.; Vobbalareddy, S.; Kalleda, S. R.; Rajjak, S. A.; Casturi, S. R.; Datla, S. R.; Mamidi, R. N. V. S.; Mullangi, R.; Bhamidipati, R.; Ramanujam, R. Akella, V.; Yeleswarapu, K. R. Org. Biomol. Chem. 2004, 2, 2442-2450.
  76. (71)Rettig, W.; Sczepan, M.; Tolmachev, A. I.; Kurdyukov, V. V. Phys. Chem. Chem. Phys. 2001, 3, 3555-3561.
  77. (72)Chauhan, S. M. S.; Jain, N.; Kumar, A. Tetrahedron Lett. 2005, 46, 2599-2602.
  78. (73)Muraoka, O.; Zheng, B.-Z.; Okumura, K.; Tanabe, G.; Momose, T.; Eugster, C, H. J. Chem. Soc, Perkin Trans. I, 1996, 1567-1575
  79. (76)陳孟瑤,二苯乙烯胺分子激發態結構及螢光感應行為之研究,國立中央大學碩士論文,2005,p38
  80. (77)Liu, Z; Larock, R. C. J. Org. Chem. 2006, 71, 3198-3209.
  81. (78)Urgaonkar, S.; Xu, J.-H.; Verkade, J. G. J. Org. Chem. 2003, 68, 8416-8423
  82. (79)Suarez-Castillo, O. R.; Beiza-Granados, L.; Melendez-Rodriguez, M.; Alvarez-
  83. Hernandez, A.; Morales-Rios, M. S.; Joseph-Nathan, P. J. Nat. Prod. 2006, 69, 1596-1600.
  84. (80)Syz, M.; Zollinger, H. Helvetica Chimica Acta 1965, 48, 517-523.
  85. (81)Saito, M.; Kondo, N.; Yamaguchi, H.; Hashimoto, T. Plant Cell Physiol. 1976, 17, 411-416.
  86. (82)Ahlbrecht, H.; Duber, E. O.; Epsztajn, J.; Marcinkowski, R. M. K. Tetrahedron 1984, 40, 1157-1165.
  87. (83)Rulliere, C.; Grabowski, Z. R.; Dobkowski, J. Chem. Phys. Lett. 1987, 137, 408-413.
  88. (84)Alfa Aesar Research Chemicals Metals & Materials; 2006-2007
  89. (85)Molander, G. A.; Brown, A. R. J. Org. Chem. 2006, 71, 9681-9686.
  90. (86)Yuko, M.; Kikugawa, Y. J. heterocycl. Chem. 1983, 20, 349-352.
  91. (88)Vaughan, J.; Welch, G. J.; Wright, G. J. Tetrahedron 1965, 21, 1665-1671.
  92. (89)Schroeder, E.; Lehmann, M.; Rufer, C.; Boettcher, I. European Journal of Medicinal Chemistry 1982, 17, 35-42.
  93. (90)Biggs, D. F.; Casy, A. F.; Chu, I.; Coutts, R. T. J. Med. Chem. 1976, 19, 472-475.
  94. (91)Billings, R. E.; Sullivan, H. R.; McMahon, R. E. J. Biol. Chem. 1971, 246, 3512-3517.