Title

外膜蛋白OprI/OprF調控綠膿桿菌對陽離子胜肽(R3S1)3之感受性

Translated Titles

Outer membrane protein, OprI/OprF, modulates the susceptibility of Pseudomonas aeruginosa to cationic peptide, (R3S1)3.

DOI

10.6342/NTU.2008.01481

Authors

鄔式絨

Key Words

抗菌胜肽外膜蛋白OprI ; 外膜蛋白OprF ; 膜通透性 ; 細胞穿透胜肽抗菌機制 ; antimicrobial peptides ; outer membrane proteins ; OprI ; OprF ; cell-penetrating peptide ; membrane permeability ; antimicrobial mechanism

PublicationName

臺灣大學微生物學研究所學位論文

Volume or Term/Year and Month of Publication

2008年

Academic Degree Category

碩士

Advisor

陳垣崇

Content Language

英文

Chinese Abstract

抗菌胜肽廣泛存在於植物、昆蟲、兩棲類和哺乳類,在先天性免疫之防禦機制上扮演重要的角色。在本論文中,我們合成一段含正電荷之胜肽-(R3S1)3,對綠膿桿菌有高度專一性的抗菌能力。我們發現綠膿桿菌之外膜蛋白OprI和OprF可和此胜肽結合,若加入過量之重組蛋白rOprI、rOprF、anti-OprI或anti-OprF專一性抗體,則可抑制胜肽之抗菌活性,因此推測外膜蛋白OprI和OprF可以調控綠膿桿菌對抗菌胜肽(R3S1)3之感受性。另外,以螢光和電子顯微鏡觀察顯示,綠膿桿菌在經過胜肽處理之後,細菌細胞膜之通透性顯著增強,外膜上會凸起產生水泡,內外膜分離,細胞質內物質有高度濃縮現象,最後會排出菌體外,而使細胞形成空洞狀。由免疫組織染色法得知,(R3S1)3穿透細菌細胞膜,累積在細胞質內高度濃縮區域,由於(R3S1)3可以和去氧核醣核酸(DNA)或核醣核酸(RNA)結合,因此我們推測此胜肽可與細胞內核酸結合,進而影響細菌之生理功能。 此胜肽(R3S1)3 除了具有殺菌特性外,也能穿透真核細胞HaCaT和HeLa之細胞膜及核膜,並聚集在細胞核某特定區域,但不造成細胞毒性,因此它可能為一具細胞穿透性之胜肽(Cell-penetrating peptide)。本論文有關(R3S1)3透過外膜蛋白OprI及OprF進入細菌,破壞及干擾菌體結構及成份之機制,提供了發展抗菌藥物之重要線索。

English Abstract

Short cationic antimicrobial peptides are widely present in living organisms for innate defense against invading microorganisms. They are generally amphipathic, small and cationic with at least two positive residues. We demonstrated a synthetic cationic peptide, (R3S1)3, possessing antimicrobial activity, especially against Pseudomonas aeruginosa. Our results showed that the outer membrane proteins of P. aeruginosa, OprI and OprF, interact with the peptide. The antimicrobial activity of (R3S1)3 were repressed by excess amounts of rOprI, rOprF, anti-OprI or anti-OprF. The bacterial membrane became permeable, the chromatin condensed in cytosol and blebs formed on outer membrane of bacteria after (R3S1)3 treatment analyzed by TEM. In addition, the (R3S1)3 translocated across the cytoplasmic membrane, localized in the cytosol of P. aeruginosa and bound to intracellular target, like nucleic acids, analyzed by immunohistochemistry. The (R3S1)3 exerted not only antimicrobial activity but also penetrated eukaryotic cell and nuclear membranes. These action mechanism of antimicrobial peptide (R3S1)3 against P. aeruginosa through the bacterial outer membrane proteins, OprI/OprF, provide important clues for development of new antimicrobial agents.

Topic Category 醫藥衛生 > 基礎醫學
醫學院 > 微生物學研究所
Reference
  1. 2. Mookherjee, N., and Hancock, R. E. (2007) Cell Mol Life Sci 64, 922-933
    連結:
  2. 4. Perlman, D., and Bodanszky, M. (1971) Annu Rev Biochem 40, 449-464
    連結:
  3. 6. Hancock, R. E. (1997) Lancet 349, 418-422
    連結:
  4. 10. Niyonsaba, F., and Ogawa, H. (2005) J Dermatol Sci 40, 157-168
    連結:
  5. 11. Brogden, K. A. (2005) Nat Rev Microbiol 3, 238-250
    連結:
  6. 12. Hancock, R. E., and Sahl, H. G. (2006) Nat Biotechnol 24, 1551-1557
    連結:
  7. 13. Jenssen, H., Hamill, P., and Hancock, R. E. (2006) Clin Microbiol Rev 19, 491-511
    連結:
  8. 19. Park, C. B., Kim, H. S., and Kim, S. C. (1998) Biochem Biophys Res Commun 244, 253-257
    連結:
  9. 21. Andreu, D., and Rivas, L. (1998) Biopolymers 47, 415-433
    連結:
  10. 24. Hancock, R. E., and Brinkman, F. S. (2002) Annu Rev Microbiol 56, 17-38
    連結:
  11. 31. Huang, Y. C., Lin, Y. M., Chang, T. W., Wu, S. J., Lee, Y. S., Chang, M. D., Chen, C., Wu, S. H., and Liao, Y. D. (2007) J Biol Chem 282, 4626-4633
    連結:
  12. 35. Hsu, C. H., Chen, C., Jou, M. L., Lee, A. Y., Lin, Y. C., Yu, Y. P., Huang, W. T., and Wu, S. H. (2005) Nucleic Acids Res 33, 4053-4064
    連結:
  13. 1. Boix, E., and Nogues, M. V. (2007) Mol Biosyst 3, 317-335
  14. 3. Hancock, R. E., and Chapple, D. S. (1999) Antimicrob Agents Chemother 43, 1317-1323
  15. 5. Stein, T., Vater, J., Kruft, V., Otto, A., Wittmann-Liebold, B., Franke, P., Panico, M., McDowell, R., and Morris, H. R. (1996) J Biol Chem 271, 15428-15435
  16. 7. Kang, J. W., Van Schepdael, A., Orwa, J. A., Roets, E., and Hoogmartens, J. (2000) J Chromatogr A 879, 211-218
  17. 8. Storm, D. R., Rosenthal, K. S., and Swanson, P. E. (1977) Annu Rev Biochem 46, 723-763
  18. 9. Clausell, A., Garcia-Subirats, M., Pujol, M., Busquets, M. A., Rabanal, F., and Cajal, Y. (2007) J Phys Chem B 111, 551-563
  19. 14. Selsted, M. E., Novotny, M. J., Morris, W. L., Tang, Y. Q., Smith, W., and Cullor, J. S. (1992) J Biol Chem 267, 4292-4295
  20. 15. Ahmad, I., Perkins, W. R., Lupan, D. M., Selsted, M. E., and Janoff, A. S. (1995) Biochim Biophys Acta 1237, 109-114
  21. 16. Aley, S. B., Zimmerman, M., Hetsko, M., Selsted, M. E., and Gillin, F. D. (1994) Infect Immun 62, 5397-5403
  22. 17. Park, C. B., Yi, K. S., Matsuzaki, K., Kim, M. S., and Kim, S. C. (2000) Proc Natl Acad Sci U S A 97, 8245-8250
  23. 18. Brotz, H., Bierbaum, G., Leopold, K., Reynolds, P. E., and Sahl, H. G. (1998) Antimicrob Agents Chemother 42, 154-160
  24. 20. Boman, H. G., Agerberth, B., and Boman, A. (1993) Infect Immun 61, 2978-2984
  25. 22. Nikaido, H., Nikaido, K., and Harayama, S. (1991) J Biol Chem 266, 770-779
  26. 23. Duchene, M., Barron, C., Schweizer, A., von Specht, B. U., and Domdey, H. (1989) J Bacteriol 171, 4130-4137
  27. 25. Rawling, E. G., Brinkman, F. S., and Hancock, R. E. (1998) J Bacteriol 180, 3556-3562
  28. 26. Bellido, F., Martin, N. L., Siehnel, R. J., and Hancock, R. E. (1992) J Bacteriol 174, 5196-5203
  29. 27. Mizuno, T., and Kageyama, M. (1979) J Biochem 86, 979-989
  30. 28. Hirashima, A., Wu, H. C., Venkateswaran, P. S., and Inouye, M. (1973) J Biol Chem 248, 5654-5659
  31. 29. Hancock, R. E., Irvin, R. T., Costerton, J. W., and Carey, A. M. (1981) J Bacteriol 145, 628-631
  32. 30. Zhang, J., Dyer, K. D., and Rosenberg, H. F. (2003) Nucleic Acids Res 31, 602-607
  33. 32. Nekhotiaeva, N., Elmquist, A., Rajarao, G. K., Hallbrink, M., Langel, U., and Good, L. (2004) FASEB J 18, 394-396
  34. 33. Arora, A., Rinehart, D., Szabo, G., and Tamm, L. K. (2000) J Biol Chem 275, 1594-1600
  35. 34. Takeshima, K., Chikushi, A., Lee, K. K., Yonehara, S., and Matsuzaki, K. (2003) J Biol Chem 278, 1310-1315
  36. 36. Grotenbreg, G. M., Buizert, A. E., Llamas-Saiz, A. L., Spalburg, E., van Hooft, P. A., de Neeling, A. J., Noort, D., van Raaij, M. J., van der Marel, G. A., Overkleeft, H. S., and Overhand, M. (2006) J Am Chem Soc 128, 7559-7565
  37. 37. Moore, R. A., Bates, N. C., and Hancock, R. E. (1986) Antimicrob Agents Chemother 29, 496-500
  38. 38. Hancock, R. E., and Nikaido, H. (1978) J Bacteriol 136, 381-390
  39. 39. Gilleland, H. E., Jr., Parker, M. G., Matthews, J. M., and Berg, R. D. (1984) Infect Immun 44, 49-54
  40. 40. Baumann, U., Mansouri, E., and von Specht, B. U. (2004) Vaccine 22, 840-847
  41. 41. Nestorovich, E. M., Sugawara, E., Nikaido, H., and Bezrukov, S. M. (2006) J Biol Chem 281, 16230-16237
  42. 42. Inouye, M., Shaw, J., and Shen, C. (1972) J Biol Chem 247, 8154-8159
  43. 43. Fung, J., MacAlister, T. J., and Rothfield, L. I. (1978) J Bacteriol 133, 1467-1471
  44. 44. Chan, Y. R., and Gallo, R. L. (1998) J Biol Chem 273, 28978-28985
  45. 45. Pujals, S., Fernandez-Carneado, J., Lopez-Iglesias, C., Kogan, M. J., and Giralt, E. (2006) Biochim Biophys Acta 1758, 264-279