Translated Titles

Analyzing Diffraction Limit and Optical Phase Conjugation via FDTD Method





Key Words

有限時域差分法 ; 消散波 ; 繞射極限 ; 光學相位共軛 ; finite-difference time-domain method ; evanescent wave ; diffraction limit ; optical phase conjugation



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract

本文主要利用有限時域差分法(finite-difference time-domain method)分析消散波(evanescent wave)與繞射極限(diffraction limit)之間的關係。我們用二維有限時域差分法模擬次波長單狹縫繞射(sub-wavelength single slit diffraction),觀察其穩態下的瞬時波印亭向量(instantaneous Poynting vector)後發現,瞬時波印亭向量的大小會隨週期改變,但方向恆定。與全反射(total internal reflection)消散波的瞬時波印亭向量比較後,我們認為,次波長單狹縫繞射波全部都是傳輸波(propagating wave),而不存在消散波。我們利用三面的光學相位共軛鏡(phase conjugate mirror),回溯狹縫寬為次波長大小(2λ/5)的單狹縫繞射,並重新聚焦於維度小於繞射極限的點上。進一步地,我們改變狹縫的截面形狀為高斯函數(Gaussian function),在狹縫寬為2λ的情況下,得到完美的回溯剖面場型。

English Abstract

In this thesis, the finite-difference time-domain (FDTD) technique is applied to analyze the relationship of evanescent wave and diffraction limit. We employ 2D FDTD to simulate sub-wavelength single slit diffraction and observe the instantaneous Poynting vector in steady-state. We find that the magnitude of the instantaneous Poynting vector varies periodically, while the direction remains unchanged. By comparing the result with the instantaneous Poynting vector of total internal reflection evanescent wave, we think that the diffracted waves of sub-wavelength single slit diffraction are all propagating waves rather than evanescent waves. We simulate the playback of the sub-wavelength (slit width is 2λ/5) single slit diffraction via 3-sided phase conjugate mirror and the phase conjugate waves re-focus back onto the spot with dimension below the diffraction limit. Furthermore, the cross-sectional shape of slit is modified from a rectangular to a Gaussian function. For the slit width is 2λ, a perfect re-focusing profile is generated.

Topic Category 電機資訊學院 > 光電工程學研究所
工程學 > 電機工程
  1. [3] R. Lord, "Investigations in optics with special reference to the spectroscope", Phil Mag, vol.8, pp. 261-274 1879.
  2. [4] J. Pendry, "Negative refraction makes a perfect lens", Physical Review Letters, vol.85, no.18, pp. 3966-3969 2000.
  3. [5] X. Zhang and Z. Liu, "Superlenses to overcome the diffraction limit", Nature Materials, vol.7, no.6, pp. 435-441 2008.
  4. [6] E. Wolf and M. Nietovesperinas, "Analyticity of the angular spectrum amplitude of scattered fields and some of its consequences", J. Opt. Soc. Am. A-Opt. Image Sci. Vis., vol.2, no.6, pp. 886-889 1985.
  5. [7] E. Synge, "A suggested method for extending microscopic resolution into the ultra-microscopic region", Philosophical Magazine Series 7, vol.6, no.35, pp. 356-362 1928.
  6. [8] J. O'KEEFE, "Resolving power of visible light", J. Opt. Soc. Am, vol.46, pp. 359-359 1956.
  7. [9] E. Ash and G. Nicholls, "Super-resolution aperture scanning microscope", Nature, vol.237, pp. 510-512 1972.
  8. [10] E. Betzig and P. L. Finn, "Combined shear force and near-field scanning optical microscopy", Appl Phys Lett, vol.60, no.20, pp. 2484 1992.
  9. [11] P. C. Yang, Y. Chen and M. Vaez-Iravani, "Attractive-mode atomic force microscopy with optical detection in an orthogonal cantilever/sample configuration", J Appl Phys, vol.71, no.6, pp. 2499 1992.
  10. [12] Z. Liu, N. Fang, T. Yen and X. Zhang, "Rapid growth of evanescent wave by a silver superlens", Appl Phys Lett, vol.83, pp. 5184 2003.
  11. [13] N. Fang, H. Lee, C. Sun and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens", Science, vol.308, no.5721, pp. 534 2005.
  12. [14] Smolyaninov, II, Y. J. Hung and C. C. Davis, "Magnifying superlens in the visible frequency range", Science, vol.315, no.5819, pp. 1699-1701, Mar 2007.
  13. [16] S. Hell and J. Wichmann, "Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy", Optics Letters, vol.19, no.11, pp. 780-782 1994.
  14. [18] J. Goodman, Introduction to fourier optics: Third edition (roberts & company publishers, 2005).
  15. [20] H. Eichler and O. Mehl, "Phase conjugate mirrors", Journal of Nonlinear Optical Physics and Materials, vol.10, pp. 43-52 2001.
  16. [21] K. Yee, "Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media", IEEE Trans. Antennas Propagat, vol.14, no.3, pp. 302-307 1966.
  17. [22] A. Taflove and S. C. Hagness, Computational electrodynamics : The finite-difference time-domain method, Artech House, Boston, 2005.
  18. [23] G. Mur, "Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations", IEEE Trans. Electromagn. Compat, vol.23, no.4, pp. 377-382 1981.
  19. [25] J. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves", J Comput Phys, vol.114, no.2, pp. 185-200 1994.
  20. [26] J. Berenger, "Perfectly matched layer for the fdtd solution of wave-structureinteraction problems", Ieee T Antenn Propag, vol.44, no.1, pp. 110-117 1996.
  21. [27] J. Berenger, "Improved pml for the fdtd solution of wave-structure interactionproblems", Ieee T Antenn Propag, vol.45, no.3, pp. 466-473 1997.
  22. [28] Z. Wu and J. Fang, "High-performance pml algorithms", IEEE Microwave and Guided Wave Letters, vol.6, no.9, pp. 335-337 1996.
  23. [29] S. Gedney, "An anisotropic perfectly matched layer-absorbing medium for thetruncation of fdtd lattices", Ieee T Antenn Propag, vol.44, no.12, pp. 1630-1639 1996.
  24. [31] S. Schelkunoff, "Some equivalence theorems of electromagnetics and their application to radiation problems", Bell System Technical Journal, vol.15, no.92-112, pp. 5.6 1936.
  25. [33] G. Mie, "Beitraege zur optik trueber medien, speziell kolloidaler metalloesungen", Annalen der Physik, vol.25, no.3, pp. 377-391,443 1908.
  26. [1] L. Novotny and B. Hecht, Principles of nano-optics, Cambridge Univ Pr, 2006.
  27. [2] E. Abbe, "Contributions to the theory of the microscope and microscopic perception", Archiv. Fur Mikroskopische Anatomic, vol.9, pp. 413-468 1873.
  28. [15] S. Hell and E. Stelzer, "Properties of a 4pi confocal fluorescence microscope", Journal of the Optical Society of America A, vol.9, no.12, pp. 2159-2166 1992.
  29. [17] E. Hecht, Optics: Fourth edition (addison-wesley, reading, ma, 2002), p. 444.
  30. [19] F. de Fornel, Evanescent waves: From newtonian optics to atomic optics, Springer Verlag, 2001.
  31. [24] Z. Liao, H. Wong, B. Yang and Y. Yuan, "A transmitting boundary for transient wave analysis", Scientia Sinica, vol.27, no.10, pp. 1063-1076 1984.
  32. [30] S. Gedney, "The perfectly matched layer absorbing medium", Advances in Computational Electrodynamics: The Finite-Difference Time-Domain Method, pp. 263-343 1998.
  33. [32] C. Balanis, Advanced engineering electromagnetics, Wiley New York, 1989.