Title

結合類綠色螢光蛋白發光團與二芳基乙烯分子的雙重調控螢光分子開關

Translated Titles

Fluorescent Molecular Switches Containing GFP-Like Chromophores and Dithienylethene

DOI

10.6342/NTU201601271

Authors

羅宛柔

Key Words

綠色螢光蛋白發光團 ; 二芳基乙烯分子 ; 聚集引致發光 ; GFP chromophore ; dithienylethene ; aggregation induced emission

PublicationName

臺灣大學化學研究所學位論文

Volume or Term/Year and Month of Publication

2016年

Academic Degree Category

碩士

Advisor

楊吉水

Content Language

繁體中文

Chinese Abstract

具有間位胺基取代效應的類綠色螢光蛋白發光團在非質子性溶劑中有高的螢光量子產率,不過因為發光團會與質子性溶劑形成氫鍵,使發光團多了一條激發態質子轉移的去活化路徑,因此具有在質子性溶劑中螢光淬熄的特性。 在各式光致變色分子中,二芳基乙烯分子中的 dithienylethene (DTE)分子具有光致開合環的特性與良好的熱穩定性,而且無論是開環或合環產物皆展現良好的疲勞阻抗性,所以常被應用在分子開關上。 本論文主要內容為結合具有間位胺基取代效應的類綠色螢光蛋白發光團與 dithienylethene (DTE)分子,合成出兩個具有雙重調控螢光系統的分子開關化合物DTE-m-D1A1 與DTE’-m-D8A1,希望在液態中可以透過改變溶劑的極性來調控其螢光開與關,而在聚集狀態下則是透過分子的光致開合環特性來調控其螢光開與關。由結果顯示 DTE-m-D1A1 與DTE’-m-D8A1 雖然在液態以及聚集狀態下皆可以滿足我的分子設計概念,但是由於dithienylethene (DTE)分子中的噻吩結構會淬熄綠色螢光蛋白發光團的螢光,造成分子先天的螢光偏弱,進而影響到聚集引致發光的轉換效率,使螢光開關間的轉換不甚完美。了解造成螢光開關轉換效率差的原因之後,未來也可以透過取代噻吩結構來提高螢光開關的轉換效率。 此外,本論文也同時探討了會淬熄綠色螢光蛋白發光團螢光的基團,無論是在液態、聚集狀態下或是具有胺基酸的環境下,建立基本的資料庫有利於後續研究的進行。

English Abstract

Meta-amino-substituted green fluorescence protein chromophore (GFPc) (m-DMABDIs) are highly emissive in aprotic solvents. However hydrogen bonding interactions between the chromophore and protic solvents could induce a fast nonradiative decay process that quenches the fluorescence. Among the various types of photochromic molecules, dithienylethene (DTE) derivatives are the most promising systems for applications as molecular switches, because they undergo ring-closing and ring-opening reactions when irradiated with UV and visible light repeatedly, with an excellent thermal stability and a high degree of fatigue resistance. This thesis aims to take the advantage of m-DMABDI chromophore and dithienylethene switch to form two fluorescent molecular switches, name DTE-m-D1A1 and DTE’-m-D8A1, that can be operated in both solution and in the aggregates. The on-off fluorescence switches rely on the solvent proticity, and the on-off switch in the aggregate form relies on the ring-closing and ring-opening reactions of the dithienylethene moiety. The results show that DTE-m-D1A1 and DTE’-m-D8A1 perform the expected properties, but the thiophene groups of dithienylethene lower the fluorescence of the chromophore, making the efficiency of AIE not ideal and thus the low on-off fluorescent ratio in the aggregates. A non-thiophene switch might improve the performance. We also systematically investigated the potential quenchers of m-DMABDI to facilitate the future design of related systems.

Topic Category 基礎與應用科學 > 化學
理學院 > 化學研究所
Reference
  1. 4. Irie, M., Diarylethene for memories and switches. Chem. Rev. 2000, 100 (5), 1685-1716.
    連結:
  2. 6. Irie, M.; Mohri, M., Thermally irreversible photochromic systems. Reversible photocyclozation of diarylethene derivatives. J. Org. Chem. 1988, 53 (4), 803-808.
    連結:
  3. 7. Lucas, L. N.; van Esch, J.; Kellogg, R. M.; Feringa, B. L., A new class of photochromic 1,2-diarylethenes; synthesis and switching properties of bis(3-thienyl)cyclopentenes. Chem. Commun. 1998, (21), 2313-2314.
    連結:
  4. 8. Xu, B. A.; Huang, Z. N.; Jin, S.; Ming, Y. F.; Fan, M. G.; Yao, S. D., Synthesis and photochromic mechanism of 3,4-bis[2,5-dimethylthiophene-3-yl]-2,5-dihydrothiophene. J. Photoch. Photobio. A 1997, 110 (1), 35-40.
    連結:
  5. 10. Yumaguchi, T.; Uchida, K.; Irie, M., Asymmetric photocyclization of diarylethene derivatives. J. Am. Chem. Soc. 1997, 119 (26), 6066-6071.
    連結:
  6. 11. Irie, M.; Fukaminato, T.; Matsuda, K.; Kobatake, S., Photochromism of Diarylethene Molecules and Crystals: Memories,Switches, and Actuators. Chem. Rev. 2014, 114, 12174-12277.
    連結:
  7. 12. Irie, M.; Branda, R. N.; Baillie, D.; Morimoto, M.; Qin, Z.; Johnsen, B.; Wu, T., Two-colour fluorescent imaging in organisms using self-assembled nano-systems of upconverting nanoparticles and molecular switches. Nanosc. Commun. 2015, 7, 11263-11266.
    連結:
  8. 13. Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z., Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 2001, 18, 1740-1741.
    連結:
  9. 15. Mei, J.; Hong, Y.; Lam, J. W.; Qin, A.; Tang, Y.; Tang, B. Z., Aggregation‐Induced Emission: The Whole Is More Brilliant than the Parts. Adv. Mater. 2014, 26 (31), 5429-5479.
    連結:
  10. 16. Hong, Y.; Jacky, W. Y. L.; Tang, B. Z., Aggregation-induced emission: phenomenon, mechanism and applications. Chem. Commun. 2009, 4332-4353.
    連結:
  11. 17. Dong, J.; Solntsev, M. K.; Tolbert, M. L., Activation and Tuning of Green Fluorescent Protein Chromophore Emission by Alkyl Substituent-Mediated Crystal Packing. J. Am. Chem. Soc. 2009, 131, 662-670.
    連結:
  12. 18. Yang, J. S.; Tou, S. L.; Huang, G. J.; Chen, P. C.; Chang, H. T.; Tsai, J. Y., Aggregation-induced emission of GFP-like chromophores via exclusion of solvent–solute hydrogen bonding. Chem. Commun. 2014, 50, 620-622.
    連結:
  13. 20. Douglas, R. H.; Mullineaux, C. W.; Partridge, J. C., Long-wave sensitivity in deep-sea stomiid dragonfish with far-red bioluminescence: evidence for a dietary origin of the chlorophyll-derived retinal photosensitizer of Malacosteus niger. Philos. T. Roy. Soc. B 2000, 355 (1401), 1269-72.
    連結:
  14. 21. Nakatsu, T.; Ichiyama, S.; Hiratake, J.; Saldanha, A.; Kobashi, N.; Sakata, K.; Kato, H., Structural basis for the spectral difference in luciferase bioluminescence. Nature 2006, 440, 372-376.
    連結:
  15. 22. Zimmer, M., Illuminating Disease: An Introduction to Green Fluorescent Proteins. 2015.
    連結:
  16. 24. Kojima, S.; Ohkawa, H.; Hirano, T.; Maki, S.; Niwa, H.; Ohashi, M.; Inouye, S.; Tsuji, F. I., Fluorescent properties of model chromophores of tyrosine-66 substituted mutants of Aequorea green fluorescent protein (GEP). Tetrahedron Lett. 1998, 39 (29), 5239-5242.
    連結:
  17. 26. Chalfie, M.; Tu, Y.; Euskirchen, G.; Ward, W. W.; Prasher, D. C., Green Fluorescent Protein as a Marker for Gene-Expression. Science 1994, 263 (5148), 802-805.
    連結:
  18. 30. (a) Webber, N. M.; Litvinenko, K. L.; Meech, S. R., Radiationless Relaxation in a Synthetic Analogue of the Green Fluorescent Protein Chromophore. J. Phys. Chem. B 2001, 105, 8036-8039; (b) Rajbongshi, B. K.; Sen, P.; Ramanathan, G., Twisted intramolecular charge transfer in a model green fluorescent protein luminophore analog. Chem. Phys. Lett. 2010, 494, 295-300; (c) Stafforst, T.; Diederichsen, U., Synthesis of Alaninyl and N-(2-Aminoethyl)glycinyl Amino Acid Derivatives Containing the Green Fluorescent Protein Chromophore in Their Side Chains for Incorporation into Peptides and Peptide Nucleic Acids. Eur. J. Org. Chem. 2007, 2007 (6), 899-911.
    連結:
  19. 31. Baldridge, A.; Feng, S.; Chang, Y. T.; Tolbert, M. L., Recapture of GFP Chromophore Fluorescence in a Protein Host. ACS Comb. Sci. 2011, 13, 214-217.
    連結:
  20. 32. Fery-Forgues, S.; Veesler, S.; Fellows, W. B.; Tolbert, L. M.; Solntsev, K. M., Microcrystals with enhanced emission prepared from hydrophobic analogues of the green fluorescent protein chromophore via reprecipitation. Langmuir : the ACS journal of surfaces and colloids 2013, 29 (47), 14718-27.
    連結:
  21. 33. Wu, L.; Burgess, K., Syntheses of highly fluorescent GFP-chromophore analogues. J. Am. Chem. Soc. 2008, 130 (12), 4089-96.
    連結:
  22. 35. Kang, J. T.; Fang, X. X.; Chen, X. K.; Zhao, G. Y.; Ren, A. M.; Xu, J. W.; Yang, W., The Zinc-Dependent Fluorescence of a Synthetic GFP-Like Chromophore in Organic Solvents. Eur. J. Inorg. Chem. 2011, 2011 (34), 5322-5327.
    連結:
  23. 36. Shi, L.; Li, Y.; Liu, Z. P.; James, T. D.; Long, Y. T., Simultaneous determination of Hg(II) and Zn(II) using a GFP inspired chromophore. Talanta 2012, 100, 401-4.
    連結:
  24. 37. Hsu, Y. H.; Chen, Y. A.; Tseng, H. W.; Zhang, Z.; Shen, J. Y.; Chuang, W. T.; Lin, T. C.; Lee, C. S.; Hung, W. Y.; Hong, B. C.; Liu, S. H.; Chou, P. T., Locked ortho- and para-core chromophores of green fluorescent protein; dramatic emission enhancement via structural constraint. J. Am. Chem. Soc. 2014, 136 (33), 11805-12.
    連結:
  25. 39. Huang, G. J.; Ho, J. H.; Prabhakar, C.; Liu, Y. H.; Peng, S. M.; Yang, J. S., Site-selective hydrogen-bonding-induced fluorescence quenching of highly solvatofluorochromic GFP-like chromophores. Org. Lett. 2012, 14 (19), 5034-7.
    連結:
  26. 40. Yang, J. S.; Huang, G. J.; Liua, Y. H.; Peng, S. M., Photoisomerization of the green fluorescence protein chromophore and the meta- and para-amino analogues. Chem. Commun. 2008, 1344-1346.
    連結:
  27. 41. Cheng, C. W.; Huang, G. J.; Hsu, H. Y.; Prabhakar, C.; Lee, Y. P.; Diau, E. W.; Yang, J. S., Effects of hydrogen bonding on internal conversion of GFP-like chromophores. II. The meta-amino systems. J. Phys. Chem. B 2013, 117 (9), 2705-16.
    連結:
  28. 42. Lewis, F. D.; Kalgutkar, R. S.; Yang, J. S., The photochemistry of trans-ortho-, -meta-, and -para-aminostilbenes. J. Am. Chem. Soc. 1999, 121 (51), 12045-12053.
    連結:
  29. 43. Lewis, F. D.; Kalgutkar, R. S.; Yang, J. S., The Photochemistry of trans-ortho-, -meta-, and -para-Aminostilbenes. J. Am. Chem. Soc. 1999, 121, 12045-12053.
    連結:
  30. 44. Saltiel, J.; Waller, A. S.; Sears, D. F., The Temperature and Medium Dependencies of cis-Stilbene Fluorescence. The Energetics for Twisting in the Lowest Excited Singlet State J. Am. Chem. Soc. 1993, 115 (6), 2453-2465.
    連結:
  31. 45. Huang, G.-J.; Cheng, C.-W.; Hsu, H.-Y.; Prabhakar, C.; Lee, Y.-P.; Diau, E. W.-G.; Yang, J.-S., Effects of hydrogen bonding on internal conversion of GFP-like chromophores. I. The para-amino systems. J. Phys. Chem. B 2013, 117 (9), 2695-704.
    連結:
  32. 46. Baranov, M. S.; Solntsev, K. M.; Baleeva, N. S.; Mishin, A. S.; Lukyanov, S. A.; Lukyanov, K. A.; Yampolsky, I. V., Red-shifted fluorescent aminated derivatives of a conformationally locked GFP chromophore. Chemistry 2014, 20 (41), 13234-41.
    連結:
  33. 47. Ikejiri, M.; Tsuchino, M.; Chihara, Y.; Yamaguchi, T.; Imanishi, T.; Obika, S.; Miyashita, K., Design and concise synthesis of a novel type of green fluorescent protein chromophore analogue. Org. Lett. 2012, 14 (17), 4406-9.
    連結:
  34. 48. Ivashkin, P. E.; Yampolsky, I. V.; Lukyanov, K. A., Synthesis and properties of chromophores of fluorescent proteins. Russ. J. Bioorg. Chem. 2009, 35, 652-669.
    連結:
  35. 49. Hermes, S.; Dassa, G.; Toso, G.; Bianco, A.; Bertarelli, C.; Zerbi, G., New fast synthesis route for symmetric and asymmetric phenyl-substituted photochromic dithienylethenes bearing functional groups such as alcohols, carboxylic acids, or amines. Tetrahedron Lett. 2009, 50, 1614-1617.
    連結:
  36. 50. Osuka, A.; Fujikane, D.; Shinmori, H.; Kobatake, S.; Irie, M., Synthesis and Photoisomerization of Dithienylethene-Bridged Diporphyrins. J. Org. Chem. 2001, 66, 3913-3923.
    連結:
  37. 51. Tosic, O.; Mattay, J., New Photochromic Dithienylethenes through a Click Chemistry Approach. Eur. J. Org. Chem. 2011, 371-376.
    連結:
  38. 52. (a) Baldridge, A.; Solntsev, K. M.; Song, C.; Tanioka, T.; Kowalik, J.; Hardcastle, K.; Tolbert, L. M., Inhibition of twisting of a green fluorescent protein-like chromophore by metal complexation. Chem. commun. 2010, 46 (31), 5686-8; (b) Lerestif, J. M.; Bazureau, J. P.; Hamelin, J., Cycloaddition with Stabilized Imidates as Potential Azomethines Ylides : A New Route to 2-Imidazoline and 4-Yliden-5-Imidazolinone. Tetrahedron Lett. 1993, 34, 4639-4642; (c) Clark, T. B.; Orr, M. E.; Flynn, D. C.; Goodson III, T., Synthesis and Optical Properties of Two-Photon Absorbing GFP-type Probes. J. Phys. Chem. C 2011, 115, 7331-7338.
    連結:
  39. 53. Wang, W.; Fu, A.; You, J.; Gao, G.; Lan, J.; Chen, L., Squaraine-based colorimetric and fluorescent sensors for Cu2+-specific detection and fluorescence imaging in living cells. Tetrahedron 2010, 66, 3695-3701.
    連結:
  40. 54. Clark, T. B.; Orr, M. E.; Flynn, D. C.; Goodson lll, T., Synthesis and Optical Properties of Two-Photon Absorbing GFP-type Probes. J. Phys. Chem. C 2011, 115, 7331-7338.
    連結:
  41. 55. Voliani, V.; Bizzarri, R.; Nifosı, R.; Abbruzzetti, S.; Grandi, E.; Viappiani, C.; Beltram, F., Cis-Trans Photoisomerization of Fluorescent-Protein Chromophores. J. Phys. Chem. B 2008, 112, 10714-10722.
    連結:
  42. 57. Giordano, L.; Jovin, T. M.; Irie, M.; Jares-Erijman, E. A., Diheteroarylethenes as Thermally Stable Photoswitchable Acceptors in Photochromic Fluorescence Resonance Energy Transfer (pcFRET). J. Am. Chem. Soc. 2002, 124, 7481-7489.
    連結:
  43. 58. Aminabhavi, T. M.; Gopalakrishna, B., Density, Viscosity, Refractive Index, and Speed of Sound in Aqueous Mixtures of N,N-Dimethylformamide, Dimethyl Sulfoxide, N,N-Dimethylacetamide, Acetonitrile, Ethylene Glycol, Diethylene Glycol, 1,4-Dioxane, Tetrahydrofuran, 2-Methoxyethanol, and 2-Ethoxyethanol at 298.15 K. J. Chem. Eng. Data 1995, 40 (4), 856-861.
    連結:
  44. 59. Lucas, L. N.; Esch, J. V.; Kellogg, R. M.; Feringa, B. L., A new synthetic route to symmetrical photochromic diarylperfluorocyclopentenes. Tetrahedron Lett. 1999, 40, 1775-1778.
    連結:
  45. 60. Hermes, S.; Dassa, G.; Toso, G.; Bianco, A.; Bertarelli, C.; Zebri, G., New fast synthesis route for symmetric and asymmetric phenyl-substituted photochromic dithienylethenes bearing functional groups such as alcohols, carboxylic acids, or amines. Tetrahedron Lett. 2009, 50, 1614-1617.
    連結:
  46. 61. Jie, M.; Xiaoneng, C.; Fen, W.; Xueyan, W.; Jianzhang, Z.; Xingwei, L., Photoswitching of the Triplet Excited State of DiiodoBodipy-Dithienylethene Triads and Application in Photo-Controllable Triplet-Triplet Annihilation Upconversion. J. Org. Chem. 2014, 79, 10855-10866.
    連結:
  47. 62. Masahiro, I.; Moe, T.; Yoshiko, C.; Takao, Y.; Takeshi, I.; Satoshi, O.; Kazuyuki, M., Design and Concise Synthesis of a Novel Type of Green Fluorescent Protein Chromophore Analogue. Org. Lett. 2012, 14, 4406-4409.
    連結:
  48. 1. https://www.uni-leipzig.de/~pwm/web/?section=introduction&page=fluorescence.
  49. 2. http://www.google.com/patents/US20050130253.
  50. 3. http://jamas91.tumblr.com/post/52131911549/rhodopsin-pathway-mnemonic.
  51. 5. Kellogg, R. M.; Groen, M. B.; Wynberg, H., J. Org.Chem. 1967, 32, 3093.
  52. 9. (a) Morimoto, M.; Kobatake, S.; Irie, M., Multi-colored photochromic crystals of diarylethene mixtures. Advanced Materials 2002, 14 (15), 1027-1029; (b) Irie, M.; Lifka, T.; Kobatake, S.; Kato, N., Photochromism of 1,2-bis(2-methyl-5-phenyl-3-thienyl)perfluorocyclopentene in a single-crystalline phase. J. Am. Chem. Soc. 2000, 122 (20), 4871-4876.
  53. 14. http://www.rsc.org/chemistryworld/2014/06/interview-ben-zhong-tang-polymers-aggregation-induced-emission.
  54. 19. Haddock, S. H. D. M., C.M.; Case, J.F. "The Bioluminescence Web Page", http://biolum.eemb.ucsb.edu/
  55. 23. http://pdb101.rcsb.org/motm/78.
  56. 25. http://pdb101.rcsb.org/learn/resource/green-fluorescent-protein-gfp-activity-page.
  57. 27. (a) Tsien, R. Y., THE GREEN FLUORESCENT PROTEIN. Annu. Rev. Biochem. 1998, 67, 509-544; (b) Heim, R.; Prasher, D. C.; Tsien, R. Y., Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proceedings of the National Academy of Sciences of the United States of America 1994, 91 (26), 12501-4; (c) Tsien, R. Y., Constructing and exploiting the fluorescent protein paintbox (Nobel Lecture). Angew. Chem-ger Edit 2009, 48 (31), 5612-26.
  58. 28. (a) Hampel, S.; Chung, P.; McKellar, C.; Hall, D.; Looger, L.; Simpson, J., Drosophila Brainbow: a recombinase-based fluorescence labeling technique to subdivide neural expression patterns. Nat. Methods 2011, 8 (3), 253-260; (b) Cai, D.; Cohen, K. B.; Luo, T.; Lichtman, J. W.; Sanes, J. R., Improved tools for the Brainbow toolbox. Nat. Methods 2013, 10 (6), 540-547; (c) Livet, J.; Weissman, T. A.; Kang, H.; Draft, R. W.; Lu, J.; Bennis, R. A.; Sanes, J. R.; Lichtman, J. W., Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 2007, 450 (7166), 56-62; (d) Lichtman, J.; Jean, L.; Joshua, S., A technicolour approach to the connectome. Nat. Rev. Neurosci. 2008, 9 (6), 417-422.
  59. 29. (a) Brejc, K.; Sixma, T. K.; Kitts, P. A.; Kain, S. R.; Tsien, R. Y.; Ormo, M.; Remington, S. J., Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein. Proceedings of the National Academy of Sciences of the United States of America 1997, 94 (6), 2306-11; (b) Ormo, M.; Cubitt, A. B.; Kallio, K.; Gross, L. A.; Tsien, R. Y.; Remington, S. J., Crystal Structure of the Aequorea victoria Green Fluorescent Protein. Science 1996, 273, 1392-1395.
  60. 34. (a) Baldridge, A.; Solntsev, K. M.; Song, C.; Tanioka, T.; Kowalik, J.; Hardcastleb, K.; Tolbert, M. L., Inhibition of twisting of a green fluorescent protein-like chromophore by metal complexation. Chem. Commun. 2010, 46, 5686; (b) Baranov, M. S.; Lukyanov, K. A.; Borissova, A. O.; Shamir, J.; Kosenkov, D.; Slipchenko, L. V.; Tolbert, L. M.; Yampolsky, L. V.; Solntsev, K. M., Conformationally Locked Chromophores as Models of Excited-State Proton Transfer in Fluorescent Proteins. J. Am. Chem. Soc. 2012, 134, 6025-6032.
  61. 38. Christensen, M. A.; Jennum, K.; Abrahamsen, P. B.; Della Pia, E. A.; Lincke, K.; Broman, S. L.; Nygaard, D. B.; Bond, A. D.; Nielsen, M. B., Highly fluorescent benzofuran derivatives of the GFP chromophore. Rsc Adv 2012, 2 (22), 8243-8249.
  62. 56. Kriz, G. S.; Pavia, D. L.; Lampman, G. M., Spectroscopy. 2010, 381-414.