Title

氮化鎵的光電化學特性在氫氣製備上的應用

Translated Titles

Photoelectrochemical Properties of GaN for Solar Hydrogen Gas Generation Applications

DOI

10.6342/NTU.2010.02852

Authors

伯斯李

Key Words

GaN ; photoeelctrochemical properties ; nanowires ; thin film ; water splitting ; GaN ; photoeelctrochemical properties ; nanowires ; thin film ; water splitting

PublicationName

臺灣大學化學研究所學位論文

Volume or Term/Year and Month of Publication

2010年

Academic Degree Category

博士

Advisor

陳貴賢;陳逸聰

Content Language

英文

English Abstract

This study aimed to investigate the photoelectrochemical properties of GaN for solar hydrogen gas applications. The thin film case is initially considered. In order to understand the effect of the polar crystallographic facets of GaN, photoelectrochemical measurements of free-standing GaN film was investigated. In 1 M HCl and 100 mW/cm2 Xe lamp illumination, the Ga-polar demonstrates a more negative onset potential compared to the N-polar surface. At more positive applied voltages, however, the N-polar shows higher photocurrent. Investigations indicate that these PEC performance profile may be explained by difference in the positions of the conduction and valence band edges of the polar surfaces. Using a simple and inexpensive photoelectrochemical and crystallographic etching process of a GaN thin film, the hydrogen generation efficiency was increased by 100%. Prior to etching, the thin film’s efficiency at the applied bias of 0.5 V versus counter electrode in 1.0 M HCl solution is 0.37%. After etching, the efficiency doubled to 0.75%. After five hours of continuous gas collection, the unetched GaN thin film yielded a stable photocurrent of 0.41 mA cm-2 which produced 0.10 mL of H2 gas. The etched sample, on the other hand, resulted to an improved stable photocurrent of 0.83 mA cm-2 and yielded a greater volume of 0.70 mL of H2 gas, with the presence of H2 confirmed through gas chromatography. The oxidation catalyst cobalt phosphate was also deposited as a thin film on GaN. The cobalt phosphate improved on the oxidation properties of GaN. Furthermore, the deposition of cobalt phosphate improved the photostability of the GaN surface. Finally, GaN nanowires were tested for their photoelectrochemical performance. Nanowires were successfully synthesized through Au-catalyzed thermal reconstruction method on GaN thin film. Photoelectrochemical measurements in 1 M HCl solution under 100 mW/cm2 of Xe light illumination of the nanowire system has shown markedly improved on the performance of the GaN nanowires compared to GaN nanowires synthesized by other methods (thermal chemical vapor deposition and metallo-organic chemical vapor deposition methods). High density nanowires fabricated from the three methods shows those that were synthesized through thermal reconstruction demonstrated photocurrent that was about one order higher than those synthesized through other techniques. The improved photoelectrochemical performance is attributed to the good interfacial contact between the nanowires and the GaN thin film substrate that allows good charge transfer during the photoelectrochemical process, and some improvements in the photoelectrochemical areas. One aspect of the nanowires growth that needed to be addressed, however, is the oxygen content of the sample. Further tests indicate the presence of oxides in the system, which may be core-shell structure with the GaN, or mixed GaN-GaOx system, a N-doped Ga2O3, or an O-doped GaN system.

Topic Category 基礎與應用科學 > 化學
理學院 > 化學研究所
Reference
  1. [1] L. R. Sheppard, J. Nowotny, Adv. Appl. Ceram. 2007, 106, 9.
    連結:
  2. [2] A. Fujishima, K. Honda, Nature 1972, 238, 37.
    連結:
  3. [5] C. G. Walle, J. Neugebauer, Nature 2003, 423, 626.
    連結:
  4. [7] O. Khaselev, J. A. Turner, Science 1998, 280, 425.
    連結:
  5. [8] J. D. Beach, R. T. Collins, J. A. Turner, J. Electrochem. Soc. 2003, 150, A899.
    連結:
  6. [9] K. Fujii, T. Karasawa, K. Ohkawa, Jpn. J. Appl. Phys. 2005, 44, L543.
    連結:
  7. [10] I. Waki, D. Cohen, R. Lal, U. Mishra, S. P. DenBaars, S. Nakamura, Appl. Phys. Lett.
    連結:
  8. 2007, 91, 093519.
    連結:
  9. Phys. Lett. 2007, 91, 3.
    連結:
  10. Huang, C. C. Chen, Small 2008, 4, 925.
    連結:
  11. [1] J. D. Beach, R. T. Collins, J. A. Turner, J. Electrochem. Soc. 2003, 150, A899.
    連結:
  12. Lth, Nano Lett. 2005, 5, 981.
    連結:
  13. 2007, 307, 298.
    連結:
  14. [2] X. Q. Gong, A. Selloni, J. Phys. Chem. B 2005, 109, 19560.
    連結:
  15. [3] X. Q. Gong, A. Selloni, J. Catal. 2007, 249, 134.
    連結:
  16. [7] D. Zhuang, J. H. Edgar, Mat. Sci. Eng. R 2005, 48, 1.
    連結:
  17. [8] J. D. Beach, R. T. Collins, J. A. Turner, J. Electrochem. Soc. 2003, 150, A899.
    連結:
  18. Lth, Nano Lett. 2005, 5, 981.
    連結:
  19. 2007, 307, 298.
    連結:
  20. [1] K. Fujii, T. Karasawa, K. Ohkawa, Jpn. J. Appl. Phys. 2005, 44, L543.
    連結:
  21. 2007, 91, 093519.
    連結:
  22. [4] K. Fujii, K. Ohkawa, J. Electrochem. Soc. 2006, 153, A468.
    連結:
  23. [5] K. Fujii, K. Ohkawa, Jpn. J. Appl. Phys., Part 2 2005, 44, L909.
    連結:
  24. [8] D. A. Stocker, E. F. Schubert, J. M. Redwing, Appl. Phys. Lett. 1998, 73, 2654.
    連結:
  25. Electrochem. Soc. 2000, 147, 763.
    連結:
  26. [10] D. Zhuang, J. H. Edgar, Mat. Sci. Eng. R 2005, 48, 1.
    連結:
  27. [12] J. D. Beach, R. T. Collins, J. A. Turner, J. Electrochem. Soc. 2003, 150, A899.
    連結:
  28. [13] X. S. Peng, K. Koczkur, S. Nigro, A. C. Chen, Chem. Commun. 2004, 2872.
    連結:
  29. [14] A. Shintani, S. Minagawa, J. Electrochem. Soc. 1976, 123, 707.
    連結:
  30. [16] P. Visconti, K. M. Jones, M. A. Reshchikov, R. Cingolani, H. Morkoc, R. J. Molnar, Appl.
    連結:
  31. Phys. Lett. 2000, 77, 3532.
    連結:
  32. 2007, 307, 298.
    連結:
  33. Rev. Pap. 2007, 46, 6573.
    連結:
  34. [21] K. Koczkur, Q. F. Yi, A. C. Chen, Adv. Mater. 2007, 19, 2648.
    連結:
  35. 2009, 54, 1228.
    連結:
  36. [1] R. van de Krol, Y. Q. Liang, J. Schoonman, J. Mater. Chem. 2008, 18, 2311.
    連結:
  37. [2] R. Memming, Semiconductor Electrochemistry, Wiley, Weinheim 2000.
    連結:
  38. [3] M. W. Kanan, D. G. Nocera, Science 2008, 321, 1072.
    連結:
  39. [5] D. A. Lutterman, Y. Surendranath, D. G. Nocera, J. Am. Chem. Soc. 2009, 131, 3838.
    連結:
  40. [7] E. M. P. Steinmiller, K. S. Choi, Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 20633.
    連結:
  41. [8] J. D. Beach, R. T. Collins, J. A. Turner, J. Electrochem. Soc. 2003, 150, A899.
    連結:
  42. [9] K. Fujii, K. Kusakabe, K. Ohkawa, Jpn. J. Appl. Phys. 2005, 44, 7433.
    連結:
  43. [1] R. van de Krol, Y. Q. Liang, J. Schoonman, J. Mater. Chem. 2008, 18, 2311.
    連結:
  44. [3] N. K. Allam, K. Shankar, C. A. Grimes, J. Mater. Chem. 2008, 18, 2341.
    連結:
  45. [4] Q. Q. Chen, D. S. Xu, Z. Y. Wu, Z. F. Liu, Nanotechnol. 2008, 19.
    連結:
  46. [5] D. Eder, M. Motta, A. H. Windle, Nanotechnol. 2009, 20.
    連結:
  47. Harrison, J. Mater. Sci. 2009, 44, 2820.
    連結:
  48. [10] S. Y. Kuang, L. X. Yang, S. L. Luo, Q. Y. Cai, Appl. Surf. Sci. 2009, 255, 7385.
    連結:
  49. [12] K. S. Ahn, S. Shet, T. Deutsch, C. S. Jiang, Y. F. Yan, M. Al-Jassim, J. Turner, J. Power
    連結:
  50. Sources 2008, 176, 387.
    連結:
  51. Phys. Lett. 2008, 93, 163117.
    連結:
  52. [15] G. W. She, X. H. Zhang, W. S. Shi, X. Fan, J. C. Chang, Electrochem. Commun. 2007, 9,
    連結:
  53. 2009, 19, 1849.
    連結:
  54. Nano Lett. 2009, 9, 2331.
    連結:
  55. [18] Y. J. Hwang, A. Boukai, P. D. Yang, Nano Lett. 2009, 9, 410.
    連結:
  56. Phys. Lett. 2007, 91, 3.
    連結:
  57. Chen, J. Y. Peng, Y. F. Chen, J. Am. Chem. Soc. 2001, 123, 2791.
    連結:
  58. [21] J. D. Beach, R. T. Collins, J. A. Turner, J. Electrochem. Soc. 2003, 150, A899.
    連結:
  59. [22] C. Y. Zhi, X. D. Bai, E. G. Wang, Appl. Phys. Lett. 2004, 85, 1802.
    連結:
  60. [24] S. L. Chou, F. Y. Cheng, J. Chen, J. Power Sources 2006, 162, 727.
    連結:
  61. [25] I. Waki, D. Cohen, R. Lal, U. Mishra, S. P. DenBaars, S. Nakamura, Appl. Phys. Lett.
    連結:
  62. 2007, 91, 093519.
    連結:
  63. Huang, C. C. Chen, Small 2008, 4, 925.
    連結:
  64. [1] K. Fujii, K. Kusakabe, K. Ohkawa, Jpn. J. Appl. Phys. 2005, 44, 7433.
    連結:
  65. [2] J. L. Chiang, Y. C. Chen, J. C. Chou, Jpn. J. Appl. Phys. 1 2001, 40, 5900.
    連結:
  66. [3] G. Steinhoff, M. Hermann, W. J. Schaff, L. F. Eastman, M. Stutzmann, M. Eickhoff,
    連結:
  67. Appl. Phys. Lett. 2003, 83, 177.
    連結:
  68. [4] Y. Alifragis, G. Konstantinidis, A. Georgakilas, N. A. Chaniotakis, Electroanal. 2005, 17,
    連結:
  69. Chang, K. H. Chen, L. C. Chen, Anal. Chem. 2009, 81, 36.
    連結:
  70. Mater. Chem. 2009, 19, 928.
    連結:
  71. Osinsky, P. P. Chow, Appl. Phys. Lett. 2005, 87, 023508.
    連結:
  72. [9] O. Ambacher, J. Phys. D Appl. Phys. 1998, 31, 2653.
    連結:
  73. [11] O. Kryliouk, H. J. Park, H. T. Wang, B. S. Kang, T. J. Anderson, F. Ren, S. J. Pearton, J.
    連結:
  74. Vac. Sci. Technol. B 2005, 25, 1891.
    連結:
  75. Hu, K. H. Chen, Appl. Phys. Lett. 2008, 93, 3.
    連結:
  76. [14] C. Y. Chang, G. C. Chi, W. M. Wang, L. C. Chen, K. H. Chen, F. Ren, S. J. Pearton, J.
    連結:
  77. Electron. Mater. 2006, 35, 738.
    連結:
  78. [15] Z. H. Lan, C. H. Liang, C. W. Hsu, C. T. Wu, H. M. Lin, S. Dhara, K. H. Chen, L. C.
    連結:
  79. Chen, C. C. Chen, Adv. Funct. Mater. 2004, 14, 233.
    連結:
  80. [16] C. Y. Chang, G. C. Chi, W. M. Wang, L. C. Chen, K. H. Chen, F. Ren, S. J. Pearton,
    連結:
  81. Appl. Phys. Lett. 2005, 87.
    連結:
  82. [19] C. F. Chen, C. L. Wu, S. Gwo, Appl. Phys. Lett. 2006, 89, 252109.
    連結:
  83. Chen, J. Phys. Chem. A 2007, 111, 5.
    連結:
  84. [21] W. C. Poh, K. P. Loh, W. D. Zhang, S. Triparthy, J.-S. Ye, F.-S. Sheu, Langmuir 2004,
    連結:
  85. Electrolytes", presented at 17th European Conference on Diamond, Diamond-Like Materials,
    連結:
  86. [24] R. Dimitrova, L. Catalan, D. Alexandrov, A. Chen, Electroanal. 2007, 19, 1799.
    連結:
  87. [25] R. Dimitrova, L. Catalan, D. Alexandrov, A. Chen, Electroanal. 2008, 20, 789.
    連結:
  88. [26] Y. S. Lu, C. C. Huang, J. A. Yeh, C. F. Chen, S. Gwo, App. Phys. Lett. 2007, 91, 3.
    連結:
  89. [27] M. C. Granger, M. Witek, J. Xu, J. Wang, M. Hupert, A. Hanks, M. D. Koppang, J. E.
    連結:
  90. [28] T. Lindgren, M. Larsson, S. E. Lindquist, Sol. Energy Mater. Sol. Cells 2002, 73, 377.
    連結:
  91. J. Graul, E. E. Haller, Phys Status Solidi B-Basic Res 2002, 230, R4.
    連結:
  92. Status Solidi B-Basic Res 2002, 229, R1.
    連結:
  93. [3] S. U. M. Khan, M. Al-Shahry, W. B. Ingler, Science 2002, 297, 2243.
  94. [4] H. S. Jung, Y. J. Hong, Y. Li, J. Cho, Y. J. Kim, G. C. Yi, ACS Nano 2008, 2, 637.
  95. [6] M. Ono, K. Fujii, T. Ito, A. Hirako, T. Yao, K. Ohkawa, J. Chem. Phys. 2007, 126,
  96. 054708.
  97. [11] K. Fujii, Y. Iwaki, H. Masui, T. J. Baker, M. Iza, H. Sato, J. Kaeding, T. Yao, J. S. Speck,
  98. S. P. Denbaars, S. Nakamura, K. Ohkawa, Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Brief
  99. Commun. Rev. Pap. 2007, 46, 6573.
  100. [12] I. M. Huygens, A. Theuwis, W. P. Gomes, K. Strubbe, Phys. Chem. Chem. Phys. 2002, 4,
  101. 2301.
  102. [13] R. S. Chen, H. Y. Chen, C. Y. Lu, K. H. Chen, C. P. Chen, L. C. Chen, Y. J. Yang, Appl.
  103. [14] R. S. Chen, S. W. Wang, Z. H. Lan, J. T. H. Tsai, C. T. Wu, L. C. Chen, K. H. Chen, Y. S.
  104. [2] X. S. Peng, K. Koczkur, S. Nigro, A. C. Chen, Chem. Commun. 2004, 2872.
  105. [3] B. J. Rodriquez, W.-C. Yang, R. J. Nemanich, A. Gruverman, Appl. Phys. Lett. 2005, 86,
  106. 112115.
  107. [4] R. Calarco, M. Marso, T. Richter, A. I. Aykanat, R. Meijers, A. v.d. Hart, T. Stoica, H.
  108. [5] R. Lewandowska, J. L. Weyher, J. J. Kelly, L. Konczewicz, B. Lucznik, J. Cryst. Growth
  109. [6] M. Ono, K. Fujii, T. Ito, A. Hirako, T. Yao, K. Ohkawa, J. Chem. Phys. 2007, 126,
  110. 054708.
  111. [1] N. Tian, Z. Y. Zhou, S. G. Sun, Y. Ding, Z. L. Wang, Science 2007, 316, 732.
  112. [4] X. Q. Gong, A. Selloni, A. Vittadini, Abstr. Pap. Am. Chem. Soc. 2006, 231, 481.
  113. [5] K. Fujii, Y. Iwaki, H. Masui, T. J. Baker, M. Iza, H. Sato, J. Kaeding, T. Yao, J. S. Speck,
  114. S. P. Denbaars, S. Nakamura, K. Ohkawa, Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Brief
  115. Commun. Rev. Pap. 2007, 46, 6573.
  116. [6] H. M. Ng, N. G. Weimann, A. Chowdhury, J. Appl. Phys. 2003, 94, 650.
  117. [9] K. Yang, Y. Dai, B. Huang, M.-H. Whangbo, Chem. Mater. 2008, 6528.
  118. [10] D. Q. Fang, A. L. Rosa, T. Frauenheim, R. Q. Zhang, Appl. Phys. Lett. 2009, 94, 3.
  119. [11] B. J. Rodriquez, W.-C. Yang, R. J. Nemanich, A. Gruverman, Appl. Phys. Lett. 2005, 86,
  120. 112115.
  121. [12] R. Calarco, M. Marso, T. Richter, A. I. Aykanat, R. Meijers, A. v.d. Hart, T. Stoica, H.
  122. [13] R. Lewandowska, J. L. Weyher, J. J. Kelly, L. Konczewicz, B. Lucznik, J. Cryst. Growth
  123. [14] M. Ono, K. Fujii, T. Ito, A. Hirako, T. Yao, K. Ohkawa, J. Chem. Phys. 2007, 126,
  124. 054708.
  125. [2] I. Waki, D. Cohen, R. Lal, U. Mishra, S. P. DenBaars, S. Nakamura, Appl. Phys. Lett.
  126. [3] M. Ono, K. Fujii, T. Ito, A. Hirako, T. Yao, K. Ohkawa, J. Chem. Phys. 2007, 126,
  127. 054708.
  128. [6] K. Fujii, Y. Iwaki, H. Masui, T. J. Baker, M. Iza, H. Sato, J. Kaeding, T. Yao, J. S. Speck,
  129. S. P. Denbaars, S. Nakamura, K. Ohkawa, Jpn. J. Appl. Phys., Part 1 2007, 46, 6573.
  130. [7] Y. Gao, M. D. Craven, J. S. Speck, S. P. DenBaars, E. L. Hu, Appl. Phys. Lett. 2004, 84,
  131. 3322.
  132. [9] D. A. Stocker, I. D. Goepfert, E. F. Schubert, K. S. Boutros, J. M. Redwing, J.
  133. [11] D. A. Stocker, E. F. Schubert, J. M. Redwing, Applied Physics Letters 1998, 73, 2654.
  134. [15] T. Kozawa, T. Kachi, T. Ohwaki, Y. Taga, N. Koide, J. Electrochem. Soc. 1996, 143, L17.
  135. [17] R. Lewandowska, J. L. Weyher, J. J. Kelly, L. Konczewicz, B. Lucznik, J. Cryst. Growth
  136. [18] K. Fujii, Y. Iwaki, H. Masui, T. J. Baker, M. Iza, H. Sato, J. Kaeding, T. Yao, J. S. Speck,
  137. S. P. Denbaars, S. Nakamura, K. Ohkawa, Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Brief Commun.
  138. [19] D. R. e. Lide, CRC Handbook of Chemistry and Physics, CRC Press LLC, 2002-2003.
  139. [20] P. Holt-Hindle, Q. F. Yi, G. S. Wu, K. Koczkur, A. C. Chen, J. Electrochem. Soc. 2008,
  140. 155, K5.
  141. [22] V. Spagnol, E. Sutter, C. Debiemme-Chouvy, H. Cachet, B. Baroux, Electrochim. Acta
  142. [23] M. Sumiya, K. Ohara, T. Ohsawa, Y. Kawai, M. Shirai, S. Fuke, H. Koinurna, Y.
  143. Matsumoto, "Photo-catalysis effect of III-V nitride film", presented at International Workshop on
  144. Nitride Semiconductors 2006 (IWN 2006), Kyoto, JAPAN, Oct 22-27, 2006.
  145. [24] P. Atkins, J. de Paula, Atkins' Physical Chemistry, Oxford University Press, Oxford
  146. University 2006.
  147. [25] N. Tian, Z. Y. Zhou, S. G. Sun, Y. Ding, Z. L. Wang, Science 2007, 316, 732.
  148. [26] C. H. Cho, M. H. Han, D. H. Kim, D. K. Kim, Mater. Chem. Phys. 2005, 92, 104.
  149. [4] M. W. Kanan, Y. Surendranath, D. G. Nocera, Chem. Soc. Rev. 2009, 38, 109.
  150. [6] D. K. Zhong, J. W. Sun, H. Inumaru, D. R. Gamelin, J. Am. Chem. Soc. 2009, 131, 6086.
  151. [2] A. Wolcott, W. A. Smith, T. R. Kuykendall, Y. P. Zhao, J. Z. Zhang, Small 2009, 5, 104.
  152. [6] M. Z. Hu, P. Lai, M. S. Bhuiyan, C. Tsouris, B. H. Gu, M. P. Paranthaman, J. Gabitto, L.
  153. [7] M. A. Khan, M. S. Akhtar, S. I. Woo, O. B. Yang, Catal. Comm. 2008, 10, 1.
  154. [8] E. Y. Kim, J. H. Park, G. Y. Han, J. Power Sources 2008, 184, 284.
  155. [9] C. J. Lin, Y. T. Lu, C. H. Hsieh, S. H. Chien, Appl. Phys. Lett. 2009, 94.
  156. [11] Y. X. Yin, Z. G. Jin, F. Hou, Nanotechnol. 2007, 18.
  157. [13] K.-S. Ahn, Y. San, S. Shet, K. Jones, T. G. Deutsch, J. A. Turner, M. Al-Jassim, Appl.
  158. [14] J. S. Jang, C. J. Yu, S. H. Choi, S. M. Ji, E. S. Kim, J. S. Lee, J. Catal. 2008, 254, 144.
  159. 2784.
  160. [16] A. Wolcott, W. A. Smith, T. R. Kuykendall, Y. P. Zhao, J. Z. Zhang, Adv. Func. Mater.
  161. [17] X. Yang, A. Wolcottt, G. Wang, A. Sobo, R. C. Fitzmorris, F. Qian, J. Z. Zhang, Y. Li,
  162. [19] R. S. Chen, H. Y. Chen, C. Y. Lu, K. H. Chen, C. P. Chen, L. C. Chen, Y. J. Yang, Appl.
  163. [20] C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C.
  164. [23] M. Ono, K. Fujii, T. Ito, A. Hirako, T. Yao, K. Ohkawa, J. Chem. Phys. 2007, 126,
  165. 054708.
  166. [26] R. S. Chen, S. W. Wang, Z. H. Lan, J. T. H. Tsai, C. T. Wu, L. C. Chen, K. H. Chen, Y. S.
  167. [1] G. Steinhoff, O. Purrucker, M. Tanaka, M. Stutzmann, M. Eickhoff, Adv. Funct. Mater.
  168. 2003, 13, 841.
  169. 527.
  170. [5] C. P. Chen, A. Ganguly, C. H. Wang, C. W. Hsu, S. Chattopadhyay, Y. K. Hsu, Y. C.
  171. [6] A. Ganguly, C. P. Chen, Y. T. Lai, C. C. Kuo, C. W. Hsu, K. H. Chen, L. C. Chen, J.
  172. [7] N. A. Chaniotakis, Y. Alifragis, G. Konstantinidis, A. Georgakilas, Anal. Chem. 2004, 76,
  173. 5552.
  174. [8] B. S. Kang, F. Ren, L. Wang, C. Lofton, W. W. Tan, S. J. Pearton, A. Dabiran, A.
  175. [10] H. Lu, W. J. Schaff, L. F. Eastman, J. Appl. Phys. 2004, 96, 3577.
  176. [12] W. T. Lim, J. S. Wright, B. P. Gila, S. J. Pearton, F. Ren, W. T. Lai, L. C. Chen, M. S.
  177. [13] C. H. Liang, L. C. Chen, J. S. Hwang, K. H. Chen, Y. T. Hung, Y. F. Chen, Appl. Phys.
  178. Lett. 2002, 81, 22.
  179. [17] H. Lu, W. J. Schaff, L. F. Eastman, Appl. Phys. Lett. 2003, 82, 1736.
  180. [18] I. Mahboob, T. D. Veal, C. F. McConville, H. Lu, W. J. Schaff, Phys. Rev. Lett. 2004, 92,
  181. 036804.
  182. [20] J. T. Chen, C. L. Hsiao, H. C. Hsu, C. T. Wu, C. L. Yeh, P. C. Wei, L. C. Chen, K. H.
  183. 20, 5484.
  184. [22] E. Kohn, "Surface Energy Levels for Diamond, GaN, InN, and AlN in Contact with
  185. Carbon Nanotubes, Nitrides and Silicon Carbide, Estoril, Portugal, 2006.
  186. [23] J. M. Nugent, K. S. V. Santhanam, A. Rubio, P. M. Ajayan, Nano Lett. 2001, 1, 87.
  187. Butler, G. Lucazeau, M. Mermoux, J. W. Strojek, G. M. Swain, Anal. Chem. 2000, 72, 3793.
  188. [29] V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F.
  189. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold,
  190. [30] V. Y. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F.
  191. Bechstedt, J. Furthmuller, H. Harima, V. Mudryi, J. Aderhold, O. Semchinova, J. Graul, Phys