Translated Titles

Charged Higgs Search at Colliders





Key Words

超越標準模型 ; 希格斯玻色子 ; 帶電荷希格斯玻色子 ; 單電荷希格斯玻色子 ; 規範玻色子 ; GM 模型 ; MGM 模型 ; Beyond Standard model ; Higgs boson ; Charged Higgs boson ; Singly charged Higgs boson ; Gauge boson ; Georgi-Machacek model ; Modified Georgi- Machacek model



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract

在大型強子對撞機發現希格斯玻色子之後,人們開始從各個可能的方向尋找超越標準模型的物理定律。其中一種可能性在於我們可能不只擁有一種希格斯玻色子,而是有更多的希格斯玻色子存在。在某些物理理論中,存在著帶電荷希格斯玻色子,而人們也試著從對撞機實驗中尋找它的存在。單電荷希格斯玻色子是帶電荷希格斯玻色子的例子之一,而在某些情況下這個玻色子只在tree level和規範玻色子耦合,而在其他模型中只在tree level和費米子耦合。然而,有可能這種單電荷希格斯玻色子同時和規範玻色子及費米子耦合。因此,考慮所有可能的耦合是相當重要的。在這篇論文中,我會著重探討尋找單電荷希格斯玻色子,考慮所有和標準模型粒子的耦合,並應用到包含這些耦合的模型。 本論文透過散射過程來尋找帶電荷希格斯玻色子,討論可能和所有標準模型中粒子耦合的情況。只與費米子和只與規範波色子的耦合出現在一些模型中,因此人們在實驗中也找出一些相對應的散射過程,所以那些數據也會在這裡使用。對於會和費米子與規範玻色子耦合的希格斯玻色子則會出現在pp→jjH , H →tb這個過程。透過分析,就可以對耦合常數設下限制,而這個分析可以適用於任何含有帶電荷希格斯玻色子的模型。在引入有耦合到費米子與規範玻色子的帶電荷希格斯粒子的模型之前,先探討任意希格斯多重態的動力學項,並且集中在特定的模型,GM模型及MGM模型。MGM模型含有在tree level耦合到費米子與$W^pm Z$的帶電荷希格斯玻色子,而且這種粒子是其他模型所沒有的。將這兩個模型用於分析中並討論其限制及顯著度,作為從對撞機中尋找單電荷希格斯玻色子的範例。

English Abstract

After the discovery of the Higgs boson at the Large Hadron Collider (LHC), people have been searched for physics beyond Standard model from every aspect. One possibility is that maybe we have not only one Higgs boson, but there are more Higgs bosons existing. In certain new physics scenarios, a charged Higgs boson is proposed in a variety of models, and people have been searching in collider experiments. A singly charged Higgs is a candidate of charged Higgs boson, and it couples only to gauge bosons in some models and couples only to fermions in other scenarios at tree level. It is also possible that the singly charged Higgs boson couples to both gauge boson and fermions instead. As a result, it is rather important to consider all the possible couplings that a charged Higgs boson may have. In this thesis, I would focus on the searches of charged Higgs boson, considering all its possible couplings to SM particle, and also applying to models that contains the couplings. The search of charged Higgs boson through several scattering processes will be provided first, and I will discuss possible processes that contains all the couplings to Standard Model particles. The coupling to fermions only and the coupling to gauge bosons only exist in some models, and people have already been looking for some processes relate to these couplings in the experiment, and data of those processes are provided. For charged Higgs bosons couple to both fermions and gauge bosons, it can be revealed through process pp→jjH , H →tb. The strength of the coupling constants would then be set through the analysis. This generic analysis is applicable to any model that contains charged Higgs bosons. Before showing a model wth charged Higgs bosons coupling to fermions and gauge bosons, a general discussion on the kinetic term of Higgs multiplets would be given first. Then I would go to specific models, Georgi-Machacek(GM) model and modified Georgi-Machacek (MGM) model. MGM model contains charged Higgs bosons that couple to both fermions and $W^pm Z$ at tree level, while such singly charged Higgs bosons do not exist in popular extended Higgs models. The analysis on charged Higgs boson would be applied to these two models to discuss constraints and sensitivities. The model gives an example for singly charged Higgs search at colliders.

Topic Category 基礎與應用科學 > 物理
理學院 > 物理學研究所
  1. [1] Chen-Ning Yang and Robert L. Mills. Conservation of Isotopic Spin and Isotopic Gauge Invariance. Phys. Rev., 96:191–195, 1954. [,150(1954)]....Ch.1
  2. [2] S. L. Glashow. Partial Symmetries of Weak Interactions. Nucl. Phys., 22:579–588,1961....Ch.1
  3. [3] Steven Weinberg. A Model of Leptons. Phys. Rev. Lett., 19:1264–1266, 1967....Ch.1
  4. [4] Abdus Salam and John Clive Ward. Electromagnetic and weak interactions. Phys. Lett., 13:168–171, 1964....Ch.1
  5. [5] F. Englert and R. Brout. Broken Symmetry and the Mass of Gauge Vector Mesons. Phys. Rev. Lett., 13:321–323, 1964. [,157(1964)]....Ch.1
  6. [6] Peter W. Higgs. Broken Symmetries and the Masses of Gauge Bosons. Phys. Rev. Lett., 13:508–509, 1964. [,160(1964)]....Ch.1
  7. [7] G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble. Global Conservation Laws and Massless Particles. Phys. Rev. Lett., 13:585–587, 1964. [,162(1964)]....Ch.1
  8. [8] Georges Aad et al. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett., B716:1–29, 2012....Ch.1
  9. [9] Serguei Chatrchyan et al. Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett., B716:30–61, 2012....Ch.1
  10. [10] Georges Aad et al. Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at s = 7 and 8 TeV. JHEP, 08:045, 2016....Ch.1
  11. [11] ALTAS. Combined measurements of Higgs boson production and decay using up to 80 fb−1 of proton–proton collision data at √s = 13 TeV collected with the ATLAS experiment. Technical Report ATLAS-CONF-2018-031, 2018....Ch.1
  12. [12] CMS. Combined measurements of the Higgs boson’s couplings at √s = 13 TeV. Technical Report CMS-PAS-HIG-17-031, 2018....Ch.1
  13. [13] G. C. Branco, P. M. Ferreira, L. Lavoura, M. N. Rebelo, Marc Sher, and Joao P. Silva. Theory and phenomenology of two-Higgs-doublet models. Phys. Rept.,516:1–102,2012....Ch.1
  14. [14] J. A. Grifols and A. Mendez. The W ZH± Coupling in SU(2)×U(1) Gauge Models. Phys. Rev., D22:1725, 1980....Ch.1
  15. [15] John F. Gunion, Howard E. Haber, Gordon L. Kane, and Sally Dawson. The Higgs Hunter’s Guide. Front. Phys., 80:1–404, 2000....Ch.1,Ch.2
  16. [16] Shinya Kanemura. Possible enhancement of the e+e− → H±W∓ cross-section in the two Higgs doublet model. Eur. Phys. J., C17:473–486, 2000....Ch.1
  17. [17] Stefano Moretti, Diana Rojas, and Kei Yagyu. Enhancement of the H±W∓Z vertex in the three scalar doublet model. JHEP, 08:116, 2015....Ch.1
  18. [18] Gauhar Abbas, Diganta Das, and Monalisa Patra. Loop induced H± → W±Z decays in the aligned two-Higgs-doublet model. 2018....Ch.1
  19. [19] George Lazarides, Q. Shafi, and C. Wetterich. Proton Lifetime and Fermion Masses in an SO(10) Model. Nucl. Phys., B181:287–300, 1981....Ch.1
  20. [20] M. Magg and C. Wetterich. Neutrino Mass Problem and Gauge Hierarchy. Phys. Lett., 94B:61–64, 1980....Ch.1
  21. [21] Rabindra N. Mohapatra and Goran Senjanovic. Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation. Phys. Rev., D23:165, 1981....Ch.1
  22. [22] T. P. Cheng and Ling-Fong Li. Neutrino Masses, Mixings and Oscillations in SU(2)x U(1) Models of Electroweak Interactions. Phys. Rev., D22:2860, 1980....Ch.1
  23. [23] Marco Cirelli, Nicolao Fornengo, and Alessandro Strumia. Minimal dark matter. Nucl. Phys., B753:178–194, 2006....Ch.1
  24. [24] Howard Georgi and Marie Machacek. Doubly charged Higgs bosons. Nucl. Phys., B262:463–477, 1985....Ch.1,Ch.2,Ch.4
  25. [25] Michael S. Chanowitz and Mitchell Golden. Higgs Boson Triplets With M (W) = M (Z) cos θω. Phys. Lett., 165B:105–108, 1985....Ch.1,Ch.4
  26. [26] Priyotosh Bandyopadhyay and Antonio Costantini. Distinguishing charged Higgs bosons from different representations at the LHC. JHEP, 01:067, 2018....Ch.1
  27. [27] G. Abbiendi et al. Search for Charged Higgs bosons: Combined Results Using LEP Data. Eur. Phys. J., C73:2463, 2013....Ch.1
  28. [28] Morad Aaboud et al. Search for charged Higgs bosons decaying into top and bottom quarks at √s = 13 TeV with the ATLAS detector. JHEP, 2018....Ch.1,Ch.3
  29. [29] Georges Aad et al. Search for charged Higgs bosons in the H± → tb decay channel in pp collisions at √s = 8 TeV using the ATLAS detector. JHEP, 03:127, 2016....Ch.1,Ch.3,App.A
  30. [30] Vardan Khachatryan et al. Search for a charged Higgs boson in pp collisions at √s = 8 TeV. JHEP, 11:018, 2015....Ch.1,Ch.3
  31. [31] Morad Aaboud et al. Search for charged Higgs bosons decaying via H± → τ±ντ in the τ+jets and τ+lepton final states with 36 fb−1 of pp collision data recorded at √s = 13 TeV with the ATLAS experiment. JHEP, 2018....Ch.1
  32. [32] CMS Collaboration. Search for charged Higgs bosons with the H± → τ±ντ decay channel in the fully hadronic final state at √s = 13 TeV. Technical Report CMSPAS-HIG-16-031, 2016....Ch.1
  33. [33] Georges Aad et al. Search for charged Higgs bosons decaying via H± → τ±ν in fully hadronic final states using pp collision data at √s = 8 TeV with the ATLAS detector. JHEP, 03:088, 2015....Ch.1
  34. [34] Vardan Khachatryan et al. Search for a light charged Higgs boson decaying to cs in pp collisions at √s = 8 TeV. JHEP, 12:178, 2015....Ch.1
  35. [35] Albert M Sirunyan et al. Search for a charged Higgs boson decaying to charm and bottom quarks in proton-proton collisions at √s = 8 TeV. JHEP, 2018....Ch.1
  36. [36] Albert M Sirunyan et al. Search for Charged Higgs Bosons Produced via Vector Boson Fusion and Decaying into a Pair of W and Z Bosons Using pp Collisions at √s = 13 TeV. Phys. Rev. Lett., 119(14):141802, 2017....Ch.1,Ch.3,App.A
  37. [37] Georges Aad et al. Search for a Charged Higgs Boson Produced in the Vector-Boson Fusion Mode with Decay H± → W±Z using pp Collisions at √s = 8 TeV with the ATLAS Experiment. Phys. Rev. Lett., 114(23):231801, 2015....Ch.1,Ch.3,App.A
  38. [38] Jian-Yong Cen, Jung-Hsin Chen, Xiao-Gang He, and Jhih-Ying Su. Impacts of multiHiggs on the ρ parameter, decays of a neutral Higgs to WW and ZZ, and a charged Higgs to W Z. Int. J. Mod. Phys., A33(26):1850152, 2018....Ch.1,Ch.4
  39. [39] J. Goldstone. Field Theories with Superconductor Solutions. Nuovo Cim., 19:154–164, 1961....Ch.2
  40. [40] Yoichiro Nambu and G. Jona-Lasinio. DYNAMICAL MODEL OF ELEMENTARY PARTICLES BASED ON AN ANALOGY WITH SUPERCONDUCTIVITY. II. Phys. Rev., 124:246–254, 1961. [,141(1961)]....Ch.2
  41. [41] Yoichiro Nambu and G. Jona-Lasinio. Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity. 1. Phys. Rev., 122:345–358, 1961. [,127(1961)]....Ch.2
  42. [42] M. Tanabashi et al. Review of Particle Physics. Phys. Rev., D98(3):030001, 2018....Ch.2,App.A
  43. [43] D. A. Ross and M. J. G. Veltman. Neutral Currents in Neutrino Experiments. Nucl. Phys., B95:135–147, 1975....Ch.2
  44. [44] M. J. G. Veltman. Limit on Mass Differences in the Weinberg Model. Nucl. Phys., B123:89–99, 1977....Ch.2
  45. [45] Nicola Cabibbo. Unitary Symmetry and Leptonic Decays. Phys. Rev. Lett., 10:531–533, 1963. [,648(1963)]....Ch.2
  46. [46] Makoto Kobayashi and Toshihide Maskawa. CP Violation in the Renormalizable Theory of Weak Interaction. Prog. Theor. Phys., 49:652–657, 1973....Ch.2
  47. [47] Ling-Lie Chau and Wai-Yee Keung. Comments on the Parametrization of the Kobayashi-Maskawa Matrix. Phys. Rev. Lett., 53:1802, 1984....Ch.2
  48. [48] B. Pontecorvo. Inverse beta processes and nonconservation of lepton charge. Sov. Phys. JETP, 7:172–173, 1958. [Zh. Eksp. Teor. Fiz.34,247(1957)]....Ch.2
  49. [49] Ziro Maki, Masami Nakagawa, and Shoichi Sakata. Remarks on the unified model of elementary particles. Prog. Theor. Phys., 28:870–880, 1962. [34(1962)]....Ch.2
  50. [50] B. Pontecorvo. Neutrino Experiments and the Problem of Conservation of Leptonic Charge. Sov. Phys. JETP, 26:984–988, 1968. [Zh. Eksp. Teor. Fiz.53,1717(1967)]....Ch.2
  51. [51] P. Anselmann et al. Solar neutrinos observed by GALLEX at Gran Sasso. Phys. Lett., B285:376–389, 1992....Ch.2
  52. [52] Y. Fukuda et al. Solar neutrino data covering solar cycle 22. Phys. Rev. Lett.,77:1683–1686, 1996....Ch.2
  53. [53] B. T. Cleveland, Timothy Daily, Raymond Davis, Jr., James R. Distel, Kenneth Lande, C. K. Lee, Paul S. Wildenhain, and Jack Ullman. Measurement of the solar electron neutrino flux with the Homestake chlorine detector. Astrophys. J., 496:505–526, 1998....Ch.2
  54. [54] W. Hampel et al. GALLEX solar neutrino observations: Results for GALLEX IV. Phys. Lett., B447:127–133, 1999....Ch.2
  55. [55] J. N. Abdurashitov et al. Measurement of the solar neutrino capture rate with gallium metal. III: Results for the 2002–2007 data-taking period. Phys. Rev.,C80:015807, 2009....Ch.2
  56. [56] K. Eguchi et al. First results from KamLAND: Evidence for reactor anti-neutrino disappearance. Phys. Rev. Lett., 90:021802, 2003....Ch.2
  57. [57] T. Araki et al. Measurement of neutrino oscillation with KamLAND: Evidence of spectral distortion. Phys. Rev. Lett., 94:081801, 2005....Ch.2
  58. [58] Y. Fukuda et al. Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett.,81:1562–1567, 1998....Ch.2
  59. [59] Y. Ashie et al. Evidence for an oscillatory signature in atmospheric neutrino oscillation. Phys. Rev. Lett., 93:101801, 2004....Ch.2
  60. [60] B. Aharmim et al. An Independent Measurement of the Total Active B-8 Solar Neutrino Flux Using an Array of He-3 Proportional Counters at the Sudbury Neutrino Observatory. Phys. Rev. Lett., 101:111301, 2008....Ch.2
  61. [61] P. Adamson et al. Measurement of Neutrino Oscillations with the MINOS Detectors in the NuMI Beam. Phys. Rev. Lett., 101:131802, 2008....Ch.2
  62. [62] Robert M. Schabinger and James D. Wells. A Minimal spontaneously broken hidden sector and its impact on Higgs boson physics at the large hadron collider. Phys. Rev., D72:093007, 2005....Ch.2
  63. [63] G. C. Branco, P. M. Ferreira, L. Lavoura, M. N. Rebelo, Marc Sher, and Joao P. Silva. Theory and phenomenology of two-Higgs-doublet models. Phys. Rept., 516:1–102, 2012....Ch.2
  64. [64] Ambalika Biswas. All about H±± in Higgs Triplet Model. 2017....Ch.2
  65. [65] Tathagata Ghosh, Sudip Jana, and S. Nandi. Neutrino mass from Higgs quadruplet and multicharged Higgs searches at the LHC. Phys. Rev., D97(11):115037, 2018....Ch.2
  66. [66] Junji Hisano and Koji Tsumura. Higgs boson mixes with an SU(2) septet representation. Phys. Rev., D87:053004, 2013....Ch.2
  67. [67] J. L. Diaz-Cruz, J. Hernandez-Sanchez, and J. J. Toscano. An Effective Lagrangian description of charged Higgs decays H+ → W+γ, W+Z and W+ h0. Phys. Lett., B512:339–348, 2001....Ch.3
  68. [68] Vernon D. Barger, J. L. Hewett, and R. J.N. Phillips. New Constraints on the Charged Higgs Sector in Two Higgs Doublet Models. Phys. Rev., D41:3421–3441, 1990....Ch.3
  69. [69] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao, T. Stelzer, P. Torrielli, and M. Zaro. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. JHEP, 07:079, 2014....Ch.3
  70. [70] Richard D. Ball et al. Parton distributions with LHC data. Nucl. Phys., B867:244–289, 2013....Ch.3
  71. [71] Torbjorn Sjostrand, Stephen Mrenna, and Peter Z. Skands. PYTHIA 6.4 Physics and Manual. JHEP, 05:026, 2006....Ch.3
  72. [72] J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lematre, A. Mertens, and M. Selvaggi. DELPHES 3, A modular framework for fast simulation of a generic collider experiment. JHEP, 02:057, 2014....Ch.3
  73. [73] Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. The anti-kt jet clustering algorithm. JHEP, 04:063, 2008....Ch.3
  74. [74] Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. FastJet User Manual. Eur.Phys. J., C72:1896, 2012....Ch.3
  75. [75] G. Apollinari, O. Brning, T. Nakamoto, and Lucio Rossi. High Luminosity Large Hadron Collider HL-LHC. CERN Yellow Report, (5):1–19, 2015....Ch.3
  76. [76] Glen Cowan, Kyle Cranmer, Eilam Gross, and Ofer Vitells. Asymptotic formulae for likelihood-based tests of new physics. Eur. Phys. J., C71:1554, 2011. [Erratum: Eur. Phys. J.C73,2501(2013)]....Ch.3
  77. [77] Georges Aad et al. Search for W′ → tb → qqbb decays in pp collisions at √s = 8 TeV with the ATLAS detector. Eur. Phys. J., C75(4):165, 2015....Ch.3
  78. [78] Cheng-Wei Chiang and Kei Yagyu. Testing the custodial symmetry in the Higgs sector of the Georgi-Machacek model. JHEP, 01:026, 2013....Ch.4
  79. [79] Cheng-Wei Chiang and Koji Tsumura. Properties and searches of the exotic neutral Higgs bosons in the Georgi-Machacek model. JHEP, 04:113, 2015....Ch.4
  80. [80] Cheng-Wei Chiang, An-Li Kuo, and Toshifumi Yamada. Searches of exotic Higgs bosons in general mass spectra of the Georgi-Machacek model at the LHC. JHEP, 01:120, 2016....Ch.4
  81. [81] Michael S. Chanowitz, M. A. Furman, and I. Hinchliffe. Weak Interactions of Ultraheavy Fermions. Phys. Lett., 78B:285, 1978....Ch.4
  82. [82] Zeke Murdock, Satyanarayan Nandi, and Zurab Tavartkiladze. Perturbativity and a Fourth Generation in the MSSM. Phys. Lett., B668:303–307, 2008....Ch.4
  83. [83] Jian-Yong Cen, Jung-Hsin Chen, Xiao-Gang He, Gang Li, Jhih-Ying Su, and Wei Wang. Searching for a charged Higgs boson with both H±W∓Z and H±tb couplings at the LHC. JHEP, 01:148, 2019....App.A
  84. [84] CMS Collaboration. Identification of b quark jets at the CMS Experiment in the LHC Run 2. 2016....App.A
  85. [85] Morad Aaboud et al. Search for vector-boson resonances decaying to a top quark and bottom quark in the lepton plus jets final state in pp collisions at √s = 13 TeV with the ATLAS detector. Phys. Lett., 2018....App.A
  86. [86] Archil Kobakhidze, Lei Wu, and Jason Yue. Anomalous Top-Higgs Couplings and Top Polarisation in Single Top and Higgs Associated Production at the LHC. JHEP, 10:100, 2014....App.A
  87. [87] Edmond L. Berger, Qing-Hong Cao, Jiang-Hao Yu, and C. P. Yuan. Calculation of Associated Production of a Top Quark and a W’ at the LHC. Phys. Rev., D84:095026, 2011....App.A
  88. [88] Georges Aad et al. Search for W′ → t¯b in the lepton plus jets final state in protonproton collisions at a centre-of-mass energy of √s = 8 TeV with the ATLAS detector. Phys. Lett., B743:235–255, 2015....App.A