(一) 含2-吡啶三氮唑配基的鋨金屬錯合物之光物理性質 (二) 顯微技術的發展與應用

Translated Titles

1. The Photophysical Properties of the Osmium Metal Complexes Containing 2-pyridyltriazole Ligands 2.The Development and Applications of Microscopy Techniques



Key Words

磷光 ; 顯微 ; phosphorescence ; microscopy



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract

第一部份針對以Os(Ⅱ)作為中心金屬,主要配基為2-pyridyl triazole的有機發光二極體材料。此一系列發光材料之光物理性質可以經由光譜量測與分析來取得。包括了因為重金屬效應而導致的磷光光譜、半生期、量子產率以及輻射速率常數,並且對於具有不同配基或是特定推拉電子基取代的各式Os(Ⅱ)金屬錯合物進行比較與討論,由此可知此一系列之錯合物相當適合作為紅光材料應用。 第二部份將介紹顯微技術的發展,重點在於近代興起的雷射掃描共軛焦顯微術、原子力顯微術、近場光學顯微術以及多光子顯微技術。由於光學非侵入式的特性,光學顯微於生物醫學與生命科學領域佔有很重要的地位,另一方面光學顯微技術也廣泛的應用在奈米科學與奈米科技上。內容包含了生醫感測探針的應用、奈米粒子光學性質的探討、倍頻材料的分析以及顯微拉曼光譜。

English Abstract

In chapter one, the basis and fundamentals of photochemistry were introduced. This demonstrated the origin and mechanism of light emitting materials, especially for applications of organic light emitting diodes. The development of osmium metal complex for blue and red OLED applications was also illustrated in this chapter. In chapter two, we will measure and discuss the photophysical properties of the osmium metal complexes containing 2-pyridyltriazole and chelating phosphine. From the measurements, we can get the phosphorescence spectra, lifetime, quantum yield and radiative decay constant. Further discussions are the effect of different electron donating/withdrawing group. It shows that these complexes are very suitable for red emitting materials. In chapter three, the development and applications are shown here. The main focus is on the modern techniques, including the laser scanning confocal microscopy, atomic force microscopy, scanning near-field microscopy and multi-photon microscopy. Due to the non-invasive property, optical microscopy plays an important role in biomedicine and life science. It is also widely used for nanoscience and nanotechnology. The last chapter will demonstrate the various types of measurements and applications, including the micro-PL, second harmonic generation and micro-Raman.

Topic Category 基礎與應用科學 > 化學
理學院 > 化學研究所
  1. Chapter 1
  2. 2 Valeur, B; Molecule fluorescence: Principles and applications, Wiley Press
  3. 5 Wu, P.-C.; Yu, J.-K.; Song, Y.-H.; Chi, Y.; Chou, P.-T.; Peng, S.-M.; and Lee, G.-H. Organometallics 2003, 22, 4938-4946
  4. J. W. Hofstraat, L. De Cola, Nature 2003, 421, 54. c) H. Yersin,
  5. U. S. Schubert, Adv. Mater. 2005, 17, 1109. e) R. C. Evans, P. Douglas,
  6. C. J. Winscom, Coord. Chem. Rev. 2006, 250, 2093.
  7. 2 Wu, P.-C.; Yu, J.-K.; Song, Y.-H.; Chi, Y.; Chou, P.-T.; Peng, S.-M.; and Lee, G.-H. Organometallics 2003, 22, 4938-4946
  8. 4 Demas, J. N.; Crosby, G. A. J. Phys. Chem. 1971, 75, 991.
  9. 4. Barbara, P.F.; Adams, D.M.; and O’Connor, D.B. Annu. Rev. Mater. Sci. 1999, 29, 433
  10. 10 Peter T.C. “Two-photon Fluorescence Light Microscopy” ENCYCLOPEDIA OF LIFE SCIENCES
  11. 13 P. I. H. Bastiaens, A. Squire, trends in Cell Biology 1999, 9, 48-52.
  12. 14 G. H. Patterson and J. Lippincott-Schwartz, Science 2002, 297, 1873-1877.
  13. 3 M. Fujita, Y. J. Kwon, S. Washizu and K. Ogura, J. Am. Chem. Soc., 1994, 116, 1151.
  14. 11 J. Zyss and J. L. Oudar, Phys. Rev. A 1982, 26, 2028
  15. 12 J.-M. Halbout and C. L. Tang, in Nonlinear Optical Properties of Organic Molecules and Crystals, J. Zyss and D. S. Chemla, Eds. (Academic Press, New York, 1987), vol. 1, chap. 11-6.
  16. 1 Atkins, P; Atkins’ Physical Chemistry 7th, Oxford Press
  17. 3 (a) Baldo, M A.; Lamansky, S.; Burrows, P. E.; Thompson, M. E.; Forrest, S. R. Appl. Phys. Lett. 1999, 75, 4-6. (b) Thompson, M. E.; Burrows, P. E.; Forrest, S. R. Curr. Opin. Solid State Mater. Sci. 1999, 4, 369.
  18. 4 Wakimoto, T; Murayama, R.; Nagayama, K. Okuda, Y.; Nakada, H.; Tohma, T. SID96 Digest (1996) 849.
  19. 6 Tung, Y.-L.; Wu, P.-C.; Liu, C.-S.; Chi, Y.; Yu, J.-K.; Hu, Y.-H.; Chou, P.-T.; Peng, S.-M.; Lee, G.-H.; Tao, Y.; Carty, A.J.; Shu, C.-F.; and Wu, F.-I. Organometallics 2004, 23, 3745-3748
  20. Chapter 2
  21. 1 a) M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E.
  22. Thompson, S. R. Forrest, Nature 1998, 395, 151. b) S. Welter, K. Brunner,
  23. Top. Curr. Chem. 2004, 241, 1. d) E. Holder, B. M. W. Langeveld,
  24. 3 Tung, Y.-L.; Wu, P.-C.; Liu, C.-S.; Chi, Y.; Yu, J.-K.; Hu, Y.-H.; Chou, P.-T.; Peng, S.-M.; Lee, G.-H.; Tao, Y.; Carty, A.J.; Shu, C.-F.; and Wu, F.-I. Organometallics 2004, 23, 3745-3748
  25. 5 Cheng, Y.-M.; Lee, G.-H.; Chou, P.-T.; Chen, L.-S.; Chi, Y.; Yang, C.-H.; Song, Y.-H.; Chang, S.-Y.; Shih, P.-I.; Shu, C.-F. Adv. Funct. Mater. 2008, 18, 183-194
  26. Chapter 3
  27. 1. US patent 3013467
  28. 2. a) Y. Jiang, F. Qin, Y. Li, X. Fang and C. Bai, Nucleic Acids Res, 2004, 32, 101. b) O.H. Willemsen, M.M.E. Snel, A. Cambi, J. Greve, B.G. De Grooth and C.G. Figdor, Biophys. J. 2000, 79, 3267. c) L. Zhang, C. Wang, S.X. Cui, Z.Q. Wang and X. Zhang, Nano Lett 2003, 3, 1119.
  29. 3. Duwez, A. S.; Cuenot, S.; Jérôme, C.; Gabriel, S.; Jérôme, R.; Rapino, S.; and Zerbetto, F. Nature Nanotechnology 2006, 1, 122 - 125
  30. 5. a) Trautman, J.K.; Macklin, J.J.; Brus, L.E.; Betzig, E.; Nature 1994, 369, 40 b) Ambrose, W.P.; Goodwin, P.M.; Martin, J.C.; Keller, R.A. Science 1994, 265, 364 c) Empedocles, S.A.; Neuhauser, R.; Shimizu, K.; and Bawendi, M.G. Adv. Mater. 1999, 11, 1243
  31. 6. Muller, F.; Gotzinger, S.; Gaponik, N.; Weller, H.;Mlynek, J.; and Benson, O. J.Phys.Chem. B 2004, 108, 14527-14534
  32. 7. a) Rudolf, R.; Mongillo, M.; Rizzuto, R.; Pozzan, T. Nat. Rev. Mol. Cell Biol. 2003, 4, 579 – 586. b) D. Thomas, S. C. Tovey, T. J. Collins, M. D. Bootman, M. J. Berridge, P. Lipp, Cell Calcium 2000, 28, 213 – 223. c) Williams, D.A.; Fay, F.S.; Am. J. Physiol. 1986, 250, 779 –791; d) Grapengiesser, E. Cell Struct. Funct. 1993, 18, 3 – 17.
  33. 8. Campagnola, P. J.; Clark, H. A.; Mohler, W. A.; Lewis, A.; Loew, L. M. Journal of Biomedical Optics 2001, 6, 277–286.
  34. 9. http://research.stowers-institute.org
  35. 11 a) H. M. Kim, M. J. An, J. H. Hong, B. H. Jeong, O. Kwon, J. Y. Hyon, S. C. Hong, K. J. Lee, B. R. Cho. Angew. Chem. Int. Ed. 2008, 47, 2231 –2234. b) H. M. Kim, B. R. Kim, J. H. Hong, J. S. Park, K. J. Lee, B. R. Cho. Angew. Chem. Int. Ed. 2007, 46, 7445 –7448. c) H. M. Kim, C. Jung, B. R. Kim, S. Y. Jung, J. H. Hong, Y. G. Ko, K. J. Lee, B. R. Cho. Angew. Chem. Int. Ed. 2007, 46, 3460 –3463. d) H. M. Kim, B. H. Jeong, J. Y. Hyun, M. J. An, M. S. Seo, J. H. Hong, K. J. C. H. Kim, T. Joo, S.-C. Hong, and B. R. Cho, J. Am. Chem. Soc. 2008, in press.
  36. 12 A. Prasanna de Silva, H. Q. Nimal Gunaratne, Thorfinnur Gunnlaugsson, Allen J.M. Huxley, Colin P. McCoy, Jude T. Rademacher, and Terence E. Rice, Chem. Rev. 1997, 97, 1515-1566
  37. 15 a) E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, Science 2006, 313, 1642-1645. b) S. Manley, J. G. Gillette, G. H. Patterson, H. Shroff, H. F. Hess, E. Betzig, J. Lippincott-Schwartz, Nature Methods 2008, 5, 155-157 c) M. J. Rust, M. Bates, X. Zhuang, Nature Methods 2006 3, 793-796. d) B. Huang, W. Wang, M. Bates, X. Zhuang, Science 2008, 319, 810-813.
  38. Chapter 4
  39. 1 (a) M. J. Zaworotko, Chem. Commun., 2001, 1, and references therein.; (b) B. Moulton and M. J. Zaworotko, Chem. Rev., 2001, 101, 1629 and references therein.; (c) T. L. Hennigar, D. C. MacQuarrie, P. Losier, R. D. Rogers and M. J. Zaworotko, Angew. Chem. Int. Ed., 1997, 36, 972.
  40. 2 (a) B. Chen, F. R. Fronczek and A. W. Maverick, Chem. Commun., 2003, 2166.; (b) I. S. Lee, D. M. Shin and Y. K. Chung, Chem. Eur. J., 2004, 10, 3158.; (c) B. Rather, B. Moulton, R. D. B. Walsh and M. J. Zaworotko, Chem. Commun., 2002, 694.
  41. 4 (a) T. Niu, X. Wang and A. J. Jacobson, Angew. Chem. Int. Ed. 1999, 38, 1934.; (b) M. Eddaoudi, J. Kim, M. O’Keeffe and O. M. Yaghi, J. Am. Chem. Soc., 2002, 124, 376.
  42. 5 L. Carlucci, N. Cozzi, G. Ciani, M. Moret, D. M. Proserpio and S. Rizzato, Chem. Commun. 2002, 1354.
  43. 6 (a) K. N. Power, T. L. Hennigar and M. J. Zaworotko, Chem. Commun. 1998, 595.; (b) M. J. M. J. Plater, M. R. St. J. Foreman and J. M. S. Skakle, Cryst. Eng., 2001, 4, 319.
  44. 7 L. L. Carlucci, G. Ciani, P. Macchi and D. M. Proserpio, Chem. Commun. 1998, 1837.
  45. 8 (a) Y.-B. Dong, M. D. Smith, R. C. Layland and H.-C. zur Loye, Chem. Mater., 2000, 12, 1156.; (b) D. M. Ciurtin, Y.-B. Dong, M. D. Smith, T. Barclay and H.-C. zur Loye, Inorg. Chem., 2001, 40, 2825.; (c) G. Zhang, G. Yang and J. S. Ma, Crystal Growth & Design, 2006, 6, 1897.
  46. 9 (a) N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O’Keeffe and O. M. Yaghi, Science, 2003, 300, 1127, and references therein. (b) R. Matsuda, R. Kitaura, S. Kitagawa, Y. Kubota, R. V. Belosludov, T. C. Kobayashi, H. Sakamoto, T. Chiba, M. Takata, Y. Kawazoe and Y. Mita, Nature, 2005, 436, 238.
  47. 10 C. Cassidy, J. M. Halbout, W. Donaldson, C. L. Tang, Opt. Commun., 1977, 29, 243
  48. 13 see http://www.crystal.unito.it
  49. 14 S. Acharya, I. Patla, J Kost, S. Efrima, and Y. Golan, J. Am. Chem. Soc., 2006, 128 (29), 9294 -9295.
  50. 15 A. Ghezelbash, B. Koo, and B. A. Korgel, Nano Lett., 2006, 6 (8), 1832 -1836.
  51. 16 See http://en.wikipedia.org/ by user Pavlina2.0