Title

利用雙對形狀週期性金屬孔洞與奈米金結構對異常穿透特性與熱紅外線發射器之高階表面電漿模態增強之研究

Translated Titles

The Studies of Enhanced Extraordinary Transmission of Higher Order Plasmon Modes with Periodic Paired-Shaped Apertures and Enhanced Higher Order IR Thermal Emitters

DOI

10.6342/NTU.2012.02712

Authors

陳又誠

Key Words

表面電漿 ; 高階模態 ; 奈米金粒 ; 異常穿透特性 ; 熱輻射發射器 ; surface plasmon ; higher order modes ; gold nanoparticles ; extraordinary transmission ; plasmonic thermal emitter

PublicationName

臺灣大學光電工程學研究所學位論文

Volume or Term/Year and Month of Publication

2012年

Academic Degree Category

碩士

Advisor

李嗣涔

Content Language

英文

Chinese Abstract

本文主要目的在於探討與了解表面電漿中高階模態之增強效應。首先,本研究在理論及實驗上研究雙對形狀週期性金屬孔洞的異常穿透特性。藉由對稱與非對稱之成對孔洞,去探討幾何形狀與大小面積對高階模態之影響。實驗上發現高階的金/矽模態之穿透強度大於一階的,而此現象可以用兩孔洞之間距比例做計算與解釋。實驗與模擬結果均指出不論形狀與大小組合改變,此種高階模態於雙對孔洞的增強效應均呈現相同趨勢。由此得證並非只有尖角對應才會有高階模態的產生,進而可以設計與控制特定高階模態之產生。另一方面,本文提出於雙對週期性孔洞結構裡鍍一層薄金模,再利用高溫快速熱烈解形成不均勻大小排列之奈米金粒偶合結構。藉由改變金膜厚度形成不同金粒大小,探討對整體高階模態穿透率之效應。實驗上發現該結構有助提升二階模態之穿透率,也證明奈米金粒於中紅外光之表面電漿增強效應。最後,我們進一步探討成對形狀週期性孔洞作為上層結構之金屬/介電質/金屬結構的電漿子熱輻射發射器的特性。藉由不同形狀之成對孔洞,進行反射與發射頻譜之量測分析。實驗上高階模態於該發射器結構中依然存在明顯的增強效應,尤以二階最強。該實驗結果有助於在中紅外光波段實現二倍頻機制,並於未來有效利用與轉換黑體輻射之能量。

English Abstract

The extraordinary transmission of gold film perforated with paired-shaped aperture array arranged in a rectangle lattice is investigated in theory and experiment. The intensities of higher order SPP modes are found to be much stronger than that of fundamental one. It is demonstrated that the enhanced higher order modes can be generated by various paired apertures as the basis in both symmetric and asymmetric designs, regardless of sizes and shapes. It is proven that the separation between the paired apertures is the key factor to determine which higher order plasmon modes can be enhanced. In addition, transmission properties of random gold nanoparticles embedded inside periodic hole arrays have been studied in the infrared region as well. By using rapid thermal annealing technique, different thickness of gold film result in randomly distributed nanoparticles. Therefore, it significantly enhances the overall transmission of higher order modes in the infrared region. Moreover, the characteristics of metal/insulator/metal (MIM) structured plasmonic thermal emitter (PTE) using periodic hole array with asymmetric paired apertures as top metallic layer are investigated. The significantly enhanced higher order SPP modes in reflectance and emittance spectra are observed. This demonstration of enhanced second order SPP modes in IR thermal emitters gives great promises for second harmonic generation in the mid-infrared region.

Topic Category 電機資訊學院 > 光電工程學研究所
工程學 > 電機工程
Reference
  1. [3] H. A. Bethe, Phys. Rev. 66, 163 (1944).
    連結:
  2. [5] U. Schroter and D. Heitmann, Phys. Rev. B 58, 15419 (1998).
    連結:
  3. [7]L. Salomon, F. Grillot, A. V. Zayats, and F. de Fornel, Phys. Rev. Lett. 86,1110(2001).
    連結:
  4. [8] Q. Cao and P. Lalanne, Phys. Rev. Lett. 88, 057403 (2002).
    連結:
  5. 161403(R) (2002).
    連結:
  6. Phys. Lett. 85, 4316 (2004).
    連結:
  7. Van Hulst, and L. Kuipers, Phys. Rev. B 72, 045421 (2005).
    連結:
  8. [14] R. Gordon and A. G. Brolo, Opt. Express 13, 1933 (2005).
    連結:
  9. [16] Z. Ruan and M. Qiu, Phys .Rev. Lett. 96, 233901 (2006).
    連結:
  10. [17] Ming-Wei Tsai, Tzu-Hung Chuang, Hsu.-Yu Chang, and Si-Chen Lee, Appl.
    連結:
  11. Phys. Lett. 89, 093102 (2006).
    連結:
  12. [18] J. W. Lee, M. A. Seo, D. J. Park, D. S. Kim, S. C. Jeoung, Ch. Lienau, Q-Han
    連結:
  13. [19] D. Crouse and P. Keshavareddy, Opt. Express 15, 1415 (2007).
    連結:
  14. Rivas, Phys. Rev. B 76, 241102(R) (2007).
    連結:
  15. [22] B. Sturman and E. Podivilov, Phys. Rev. B 76, 125104 (2007).
    連結:
  16. Express 15, 18119 (2007).
    連結:
  17. 76, 195414 (2007).
    連結:
  18. [27] P. Hewageegana and V. Apalkov, J. Phys.: Condens. Matter 20, 395228 (2008).
    連結:
  19. Kavanagh, Phys. Rev. Lett. 92, 037401 (2004).
    連結:
  20. [30] Chia-Yi Chen, Ming-Wei Tsai, Tzu-Hung Chuang, Yi-Tsung Chang, and Si-Chen
    連結:
  21. Lee, Appl. Phys. Lett. 91, 063108 (2007).
    連結:
  22. (8), (2010)
    連結:
  23. [34] Fang, Y. R.; Li, Z. P.; Huang, Y. Z.; Zhang, S. P.; Nordlander, P.; Halas, N. J.;
    連結:
  24. Xu, H. X. Nano Lett., 10 (5), 1950–1954. (2010)
    連結:
  25. (8), 3006–3012. (2010)
    連結:
  26. 10, 2511–2518. (2010)
    連結:
  27. Lett., 106, 083003, (2011)
    連結:
  28. [40] S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet and T. W. Ebbesen, Nature, 440, 508-511 (2006)
    連結:
  29. [41] Zheyu Fang, Qian Peng,Wentao Song, Fenghuan Hao, Jia Wang, Peter
    連結:
  30. [43] Ozbay, E. Science 2006, 311, 189–193.
    連結:
  31. [45] R. H. Ritchie, Phys. Rev. 106, 874−881 (1957).
    連結:
  32. [46] H. Raether, Surface Plasmons (Springer-Verlag, Berlin) (1988)
    連結:
  33. Phys. Lett. 77, 1569 (2000).
    連結:
  34. L. Kuipers, Phys. Rev. Lett. Vol.92.183901 (2004)
    連結:
  35. 45, 1348 (2006).
    連結:
  36. [54] J. Y. Fang, C. H. Tien, H. P. D. Shieh, Optic Exp. 15, 11741 (2007).
    連結:
  37. No. 11 (2011)
    連結:
  38. [56] Yi-Tsung Chang, Dah-Ching Tzuang, Yi-Ting Wu, Chi-Feng Chan, Yi-Han Ye, Ting-Hsiang Hung, Yu-Fan Chen, and Si-Chen Lee, Appl. Phys. Lett. , 92, 253111 (2008)
    連結:
  39. Appl. Phys. Lett. 91, 063108 (2007).
    連結:
  40. [59] J. Schmidt, M. Kerr and A. Cuevas, Semicond. Sci. Technol. 16, 164 (2001).
    連結:
  41. [60] Y. T. Chang, Y. C. Lai, C. T. Li, C. K. Chen, and T. J. Yen, Opt. Exp. 18, 9561
    連結:
  42. [62] C. M. Wang and Y. C. Chang, Opt. Exp. 15, 14673 (2007).
    連結:
  43. [63] Y. T. Chang, Y. T. Wu, J. H. Lee, H. H. Chen, C. Y. Hsieh, H. F. Huang, Y. W.
    連結:
  44. Jiang, P. E. Chang and S. C. Lee, Appl. Phys. Lett. 95,213102 (2009).
    連結:
  45. [64] M. Airola, Y. Liu, and S. Blair,” J. Opt. A: Pure Appl. Opt. 7(2),
    連結:
  46. S118–S123 (2005).
    連結:
  47. [65] J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, Phys. Rev. Lett. 97(14), 146102 (2006).
    連結:
  48. [69] I. Smolyaninov, A. Zayats, and C. Davis,” Phys. Rev. B 56, 9290–9293 (1997).
    連結:
  49. [70] A. V. Zayats, I. Smolyaninov, and C. C. Davis, Proc. SPIE 3732, 81–92 (1999).
    連結:
  50. [71] Paresh Chandra Ray, Chem. Rev. 10, 5332–5365 (2010)
    連結:
  51. [72] Prasad, P. N., Williams, D., Eds. J. Wiley: New York, (1991)
    連結:
  52. J. Opt. Soc. Am. B , Vol. 27, No. 11(2010)
    連結:
  53. [76] W. L. Schaich,” Phys. Rev. B 78, 195416 (2008).
    連結:
  54. [78] A. Lesuffleur, L. K. S. Kumar, and R. Gordon,Appl. Phys. Lett. 88, 261104 (2006).
    連結:
  55. [80]M. Airola, Y. Liu, and S. Blair, J.Opt. A, Pure Appl. Opt. 7, S118–S123 (2005).
    連結:
  56. [82] Seungchul Kim, Jonghan Jin, Young-Jin Kim, In-Yong Park, Yunseok Kim, Seung-Woo Kim, Nature, Vol. 453, (2008)
    連結:
  57. [86] Y. T. Chang, Y. T. Wu, J. H. Lee, H. H. Chen, C. Y. Hsieh, H. F. Huang, Y. W.
    連結:
  58. Jiang, P. E. Chang and S. C. Lee, Appl. Phys. Lett. 95,213102 (2009).
    連結:
  59. 90, 253106 (2007).
    連結:
  60. Phys. Lett. 91, 243111 (2007).
    連結:
  61. [90] Thomas Sondergaard,Sergey I. Bozhevolnyi, Jonas Beermann, Sergey M. Novikov,Eloise Devaux, and Thomas W. Ebbesen, , J. Opt. Soc. Am. B . Vol. 29, No. 1 .( 2012)
    連結:
  62. [93] Chih-Wei Yu, Master Thesis of GIEE, NTU, (2012)
    連結:
  63. [94] R. H. Ritchie, Phys. Rev. 106, 874−881 (1957).
    連結:
  64. [95] H. Raether, Surface Plasmons (Springer-Verlag, Berlin, 1988).
    連結:
  65. [96] J. Gomez Rivas, Nature Photonics 2, 137 (2008).
    連結:
  66. Turunen, and Y. Svirko, Phys. Rev. Lett. 95, 227401 (2005).
    連結:
  67. [99] F. J. Garc’ıa-de-Abajo, R. G’omez-Medina, and J. J. S’aenz, Phys. Rev. E 72, 016608 (2005).
    連結:
  68. [103] Charles Kittel, “Ch.2 Reciprocal Lattice”, Introduction to Solid State Physics 8th ed., (2005)
    連結:
  69. [105] Y. T. Chang, Y. T. Wu, J. H. Lee, H. H. Chen, C. Y. Hsueh, H. F. Huang, Y. W. Jiang, P. E. Chang, and S. C. Lee, Appl. Phys. Lett. 95, 213102 (2009)
    連結:
  70. Turunen, d Martti Kauranen, J. Opt. A: Pure Appl. Opt. 7 (2005)
    連結:
  71. [107] Hong Wei, Daniel Ratchford, Xiaoqin (Elaine) Li, Hongxing Xu,
    連結:
  72. and Chih-Kang Shih, Nano Lett. Vol.9 No. 12 (2009)
    連結:
  73. Appl. Phys. 108, 093520 (2010)
    連結:
  74. [109] Matthew J. Kofke, David H. Waldeck, and Gilbert C. Walker, Opt. Express, Vol.18, No. 8, (2010).
    連結:
  75. [1] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature
  76. (London) 391, 667 (1998).
  77. [2] H. F. Ghaemi, Tineke Thio, D. E. Grupp, T. W. Ebbesen, H. J. Lezec, Phys. Rev. B 58, 6779 (1998).
  78. [4] Hua Lu, Xueming Liu,* Renlong Zhou, Yongkang Gong, and Dong Mao, Appl.
  79. Opt. Vol. 49, No. 12 / 20 (2010)
  80. [6]J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, Phys. Rev. Lett. 83, 2845(1999).
  81. [9] A. Barbara, P. Quemerais, E. Bustarret, and T. Lopez-Rios, Phys. Rev. B 66,
  82. [10] W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, Phys. Rev. Lett. 92, 107401 (2004).
  83. [11] K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, Appl.
  84. [12] K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F.
  85. [13] S.-H. Chang, S. K. Gray, and G. C. Schatz, Opt. Express 13, 3150 (2005).
  86. [15] A. G. Borisov, F. J. Garcia de Abajo, and S. V. Shabanov, Phys. Rev. B 71, 075408 (2005).
  87. Park, and P. C. M. Planken, Opt. Express 14, 1253 (2006).
  88. [20] J. Bravo-Abad, L. Martin-Moreno, F. J. Garcia-Vidal, E. Hendry, and J. Gomez
  89. [21] Y. Pang, C. Genet, and T. W. Ebbesen, Opt. Commun. 280, 10 (2007).
  90. [23] J. M. McMahon, J. Henzie, T. W. Odom, G. C. Schatz, and S. K. Gray, Opt.
  91. [24] A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, Phys. Rev. B
  92. [25] D. Pacifici, H. J. Lezec, H. A. Atwater, and J. Weiner, Phys. Rev. B 77, 115411
  93. (2008).
  94. [26] B. Sturman and E. Podivilov, and M. Gorkunov, Phys. Rev. B 77, 075106
  95. (2008).
  96. [28] H. Liu and P. Lalanne, Nature 452, 728 (2008).
  97. [29] R. Gordon, A. G. Brolo, A. Mckinnon, A. Rajora, B. Leathem, and K. L.
  98. [31] Yang Hyun Joo,1 Seok Ho Song,1, Robert Magnusson, Appl. Phys. Lett. 97, 201105 (2010)
  99. [32] Cao, L. Y.; Fan, P. Y.; Vasudev, A. P.; White, J. S.; Yu, Z. F.; Cai, W. S.;
  100. Schuller, J. A.; Fan, S. H.; Brongersma, M. L. Nano Lett., 10 (2), 439–445. (2010)
  101. [33] Hardin, B. E.; Yum, J. H.; Hoke, E. T.; Jun, Y. C.; Pechy, P.; Torres, T.;
  102. Brongersma, M. L.; Nazeeruddin, M. K.; Gratzel, M.; McGehee, M. D. Nano Lett., 10
  103. [35] Ba, H. J.; Rodriguez-Fernandez, J.; Stefani, F. D.; Feldmann, J. Nano Lett., 10
  104. [36] Aksu, S.; Yanik, A. A.; Adato, R.; Artar, A.; Huang, M.; Altug, H. Nano Lett.,
  105. [37] Berkovitch, N.; Ginzburg, P.; Orenstein, M. Nano Lett. 2010, 10, 1405–1408.
  106. [38] Zayak, A. T.; Hu, Y. S.; Choo, H.; Bokor, J.; Cabrini, Neaton, J.B. Phys. Rev.
  107. [39] W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, Nano Lett 8, 281-286 (2008)
  108. Nordlander and Xing Zhu, Nano Lett., 11, 893–897 (2011)
  109. [42] Barnes, W. L.; Dereux, A.; Ebbersen, T. W. Nature, 424, 824–830. (2003)
  110. [44] Kaspar D. Ko, Anil Kumar, Kin Hung Fung, Raghu Ambekar, Gang Logan Liu,
  111. Nicholas X. Fang,and Kimani C. Toussaint, Jr, Nano Lett. 102751, (2011)
  112. [47] D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and Tineke Thio, Appl.
  113. [48] W. L. Barnes, A. Dereux, T. W. Ebbesen, Nature 424,824,(2003).
  114. [49] C.Genet, T. W. Ebbesen, Nature Rev. 445, 39 (2007).
  115. [50] E. Laux, C. Gemet, and T. W. Ebbesen, Optic. Exp. 17, 6920, (2009).
  116. [51]K. J. Klein Koerkamp,1 S. Enoch,2 F. B. Segerink,1 N. F. van Hulst,1 and
  117. [52] X. Shi, R. L. Thornton, and L. Hesselink, Opt. Lett. 28, 1320 (2003).
  118. [53] Y. C. Chen, J. Y. Fang, C. H. Tien, and H. P. D. Shieh, Jpn. J. Appl. Phys.
  119. [55] S. Carretero-Palacios, O. Mahboub,F. J. Garcia-Vidal, L. Martin-Moreno,
  120. Sergio G. Rodrigo,C. Genet, and T. W. Ebbesen, Opt. Express, Vol. 19,
  121. [57] C.Y. Chen, M. W. Tsai, T. H. Chaung, Y. T. Chang and S. C. Lee,
  122. [58] H. A. Atwater and A. Polman, Nature Materials 9, 2629 (2010).
  123. (2010).
  124. [61] M. N. Mar, B. D. Ratner, S. S. Yee, Sensors and Actuators B 54, 125 (1999).
  125. [66] W. Fan, S. Zhang, N.-C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood,
  126. K. J. Malloy, and S. R. J. Brueck, Nano Lett. 6(5), 1027–1030 (2006).
  127. [67] W. Fan, S. Zhang, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, Opt. Express 14(21), 9570–9575 (2006).
  128. [68] P. A. Franken, C. W. Peters, and G. Weinreich, Phys. Rev. Lett. 7, (1961).
  129. [73] Nalwa, H. S., Miyata, S., Eds. CRC Press: Boca Raton, FL. (1997)
  130. [74] Kanis, D. R.; Ratner, M. A.; Marks, T. J. Chem. Rev. 94, 195. (1994)
  131. [75] Renlong Zhou, Hua Lu,Xueming Liu, Yongkang Gong, and Dong Mao,
  132. [77] N. Feth, S. Linden, M. W. Klein, M. Decker, F. B. P. Niesler, Y. Zeng, W. Hoyer, J. Liu, S. W. Koch, J. V. Moloney, and M.Wegener, ” Opt. Lett. 33, 1975–1977 (2008).
  133. [79] S. Kujala, B. K. Canfield, M. Kauranen, Y. Svirko, and J. Tu-runen, Phys. Rev. Lett. 98, 167403 (2007).
  134. [81]M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, Science 313, 502–504 . (2006).
  135. [83] V. K. Valev, A. V. Silhanek, N. Smisdom, B. De Clercq, W. Gillijns, O. A. Aktsipetrov, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, Opt. Express, Vol. 18, No. 8 (2010)
  136. [84] Ajay Nahata and Richard A. Linke, T. Ishi and K. Ohashi, Opt. Lett., Vol. 28, No. 6, (2003)
  137. [85] M. W. Tsai, T. H. Chuang, C. Y. Meng, Y. T. Chang, and S.C. Lee , Appl. Phys. Lett. 89, 173116 (2006).
  138. [87] Y. T. Chang, T. H. Chuang, M. W. Tsai, M. J. Lai, and S. C. Lee, Appl. Phys. Lett.
  139. [88] C. Y. Chen, M. W. Tsai, Y. W. Jiang, Y. H. Yeh, Y. T. Chang, S. C. Lee, Appl.
  140. [89] Sun, G.,Khurgin, J. B.,Yang, C. C., Appl. Phys. Lett. Vol.96 Issue. 17 (2009)
  141. [91] Shao-Yu Huang, Hui-Hsin Hsiao, Yi-Tsung Chang, Hung-Chun Chang, and Si-Chen Lee, Appl. Phys. Lett. Vol.98, 253107 (2011)
  142. [92] F. Przybilla, A. Degiron, C. Genet, T.W. Ebbesen, F. de L’eon-P’erez, J.
  143. ravo-Abad, F. J.Garc’ıa-Vidal, L. Mart’ın-Moreno, Opt. Express, Vol. 16, No. 13 . (2008)
  144. [97] J. B. Pendry, L. Martin-Moreno, F. J. Garcia-Vidal, Science 305, 847 (2004)
  145. [98] M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J.
  146. [100] Bo Hou, Zhi Hong Hang, Weijia Wen, C. T. Chan, and Ping Sheng, Appl. Phys. Lett., 89, 131917 (2006)
  147. [101] Andr’e Siegel, Manuel R Gonc﹐alves, Ralf Ameling and Othmar Marti, J. Opt. A: Pure Appl. Opt. 9 S443–S449. (2007)
  148. [102] Tatsunosuke Matsui1, Amit Agrawal, Z.Valy Vardeny, Nature ,05620, Vol 446.29(2007)
  149. [104] Goodman, ‘‘Ch. 2 Analysis of Two-Dimensional Singnals and Systems’’, Introduction to Fourier Optics 3rd ed., (2004)
  150. [106] Brian K Canfield, Sami Kujala, Konstantins Jefimovs, Tuomas Vallius, Jari
  151. [108] Meng-Dong He, Zhi-Qiang Gong, Shui Li, Yong-Feng Luo, Jian-Qiang Liu, J.
  152. [110] Zhaoguang Pang, Xinping Zhang, and Tianrui Zhai, J. Appl. Phys., 110, 074313 (2011).
  153. [111] Zhanghua Han, Erik Forsberg, and Sailing He, IEEE PTL, vol.19, No.2, (2007)
  154. [112] R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, J. Opt. Soc. Amer., vol. 21, no. 12, pp. 2442–2446, 2004.
  155. [113] D. E. Palik, Handbook of Optical Constants of Solids (Academic, Boston, 1985s)
  156. [114] S. Collin, F. Pardo, and J. L. Pelouard, Opt. Exp. 15, 4310 (2007).