Title

基於魚眼投影幾何之物像對應模式鏡頭率定策略研擬

Translated Titles

Strategy Formulation of Fisheye Lens Calibration Using The Object-Image Correspondence Based On Geometric Projection Models.

DOI

10.6342/NTU201901934

Authors

楊軒

Key Words

魚眼鏡頭 ; 透鏡畸變 ; 單片後方交會 ; 自適性自率光束法平差 ; 自由網 ; Fisheye lens ; Lens distortion ; Spatial resection ; Self-adatptive bundle adjustment with self-calibration ; Free-network

PublicationName

臺灣大學土木工程學研究所學位論文

Volume or Term/Year and Month of Publication

2019年

Academic Degree Category

碩士

Advisor

趙鍵哲

Content Language

繁體中文

Chinese Abstract

魚眼鏡頭因其超廣角之特性,故相較於一般廣角鏡頭更適用於需要一次性蒐集全景資訊之任務,如:環境監測、森林科學、顯露度測量、自駕車避障等相關應用需求。但伴隨而來的顯著影像變形,對於利用魚眼影像進行近景攝影測量高精度空間定位任務來說,鏡頭率定則為必要之。 雖然類歸為光學鏡頭,但因應廣角取像,魚眼鏡頭設計之精確成像路徑並不適合以中心透視投影模式描述,故物像對應模式的適切性則成了決定空間定位品質的關鍵性因素,本研究為後續高精度(前方交會誤差毫米等級,或小於地面取樣距離)空間定位應用需求,故採用基於魚眼投影幾何所推導出的物像對應模式搭配附加參數吸納透鏡畸變差。為了精進魚眼鏡頭率定任務,本論文主要著眼於率定觀測資料蒐集面工作優化及最佳投影模式搜尋,並採取模擬實驗得到精確的率定策略,爾後即建立實際率定場並仿照模擬實驗之設計執行實際率定實驗,以定性及定量方式進行成果分析,檢視率定策略的有效性及實用性。 根據以上所提方法所獲得研究成果顯示: 使用魚眼鏡頭幾何投影物像對應模式搭配附加參數之方法,經實驗證實可妥善地描述魚眼鏡頭之物像對應關係。除此之外,關於鏡頭率定策略,僅需於率定場中布設20個分布良好的率定標點以及位置適中的兩攝影站並採用自率光束法搭配次像元像點與毫米級控制點觀測量,即可獲得次像元後驗單位權標準差(0.24 pixels)與前方交會誤差毫米級(<5.6 mm,反投影約0.5pixels)之率定成果,具體展示本研究研議之方法及程序能有效及精準執行魚眼鏡頭率定,同時,物像對應品質亦足夠支援次像元等級的物空間定位應用。

English Abstract

Due to ultra wide-angle characteristics, fisheye lenses are widely used in artistic photography, surveillance application, forest science, self-driving obstacle avoidance, etc. Some applications that need to collect panoramic geo-information are especially suitable for using this kind of cameras. However, the imaging distortion of the fisheye image is significant, so the validity of fisheye lens calibration would largely depend on the correctness of geometric modelling between the image points and the object points. Since the fisheye lens has its own specific type of imaging formation, using collinearity equation attached by additional lens distortion parameters cannot set up a sufficient model. To achieve the relevant requirements of the metric measurement, this study adopts the rigorous object-image corresponding model to include geometric projection model for fisheye lens calibration. The discrepancy between the ideal image point and the actual image point is treated as the effect of lens distortion and modeled by additional parameters. This study aims to tackle effective implementation, including observation acquisition and optimal projection determination. Therefore, the contribution of this study is to support 3-D positioning with high precision under geometric projection models and to analyze, both quantitatively and qualitatively, the strategies of fisheye lens calibration. It is revealed from the experimental results that the object-to-image correspondence of fisheye lens based on the proposed model offers satisfactory geometric calibration quality. Strategically, the self-adatpive bundle adjustment with self-calibration for fisheye lens can be realized under sub-pixel image measurement quality at the expense of only 20 well-distributed coded targets and acquiring two images at appropriate locations to achieve the sub-pixel level of object point positioning. Thus, it is verified that the proposed methods and procedures can effectively and accurately implement the fisheye lens calibration. At the same time, the calibration result is also sufficient to support the mission of object point determination up to sub-pixel level quality.

Topic Category 工學院 > 土木工程學研究所
工程學 > 土木與建築工程
Reference
  1. 林冠穎,2014。多測站具GPS定位之球形全景影像之光束法平差,國立成功大學測量及空間資訊學系碩士論文,台南,台灣。
  2. 黃光群,2018。多台GoPro相機全景影像之近景攝影測量,國立成功大學測量及空間資訊學系碩士論文,台南,台灣。
  3. 張晏碩,2017。魚眼鏡頭變形校正之研究,國立政治大學地政學系碩士論文,台北,台灣。
  4. 簡振和,陳明仁,林博雄,謝棃惠,2016。降雨觀測技術改良之先期研究,經濟部水利署委辦計畫報告書。
  5. 楊 軒、趙鍵哲,2018。基於魚眼物像對應模式之魚眼相機率定策略研擬,第三十七屆測量學術研討會,九月四日至九月五日,桃園,台灣。
  6. Abraham, S. and W. Förstner, 2005. Fish-eye-stereo calibration and epipolar rectification. ISPRS Journal of Photogrammetry and Remote Sensing, 59(5): 278–288.
  7. Balletti, C., F. Guerra, V. Tsioukas and P. Vernier, 2014. Calibration of action cameras for photogrammetric purposes. Sensors, 14(9): 17471-17490.
  8. Baker, S. and S. Nayar, 2001. Single viewpoint catadioptric cameras. In Panoramic vision. Springer, New York, NY., pp. 39-71.
  9. Barazzetti, L., M. Previtali and F. Roncoroni, 2017. Fisheye lenses for 3D modeling: evaluations and considerations, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42(2/W3): 79-84.
  10. Brown, D., 1971. Close-range camera calibration. Photogrammetric Engineering, 37(8): 855-866.
  11. Campos, M., A. Tommaselli, J. Marcato Junior and E. Honkavaara, 2018. Geometric model and assessment of a dual-fisheye imaging system. The Photogrammetric Record, 33(162): 243-263.
  12. Dermanis, A., 1994. The photogrammetric inner constraints. ISPRS Journal of Photogrammetry and Remote Sensing, 49(1): 25-39.
  13. El-Hakim, S. F., 1986. Real-time image meteorology with ccd cameras. Photogrammetric Engineering and Remote Sensing, 52 (11): 1757-1766.
  14. Feng, W., J. Röning, J. Kannala, X. Zong and B. Zhang, 2012. A general model and calibration method for spherical stereoscopic vision. Intelligent Robots and Computer Vision XXIX: Algorithms and Techniques, 8301: 830107.
  15. Fraser, C. S., 1982. Optimization of precision in close-range photogrammetry. Photogrammetric Engineering and Remote Sensing, 48(4): 561-570.
  16. Granshaw, S. I., 1980. Bundle adjustment methods in engineering photogrammetry. The Photogrammetric Record, 10(56): 181-207.
  17. Häne, C., T. Sattler and M. Pollefeys, 2015. Obstacle detection for self-driving cars using only monocular cameras and wheel odometry. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5101-5108.
  18. Hastedt, H., T. Ekkel and T. Luhmann, 2016. Evaluation of the quality of action cameras with wide-angle lenes in UAV photogrammetry. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B1, pp. 851-859.
  19. Hughes, C., P. Denny, E. Jones and M. Glavin, 2010. Accuracy of fish-eye lens models, Applied Optics. 49(17): 3338-3347.
  20. Huang, F., Y. Wang, X. Shen, C. Lin and Y. Chen, 2012. Method for calibrating the fisheye distortion center. Applied Optics, 51(34): 8169-8176.
  21. Joshi, C., 2006. Mapping cryptic invaders and invisability of tropical forest ecosystems: Chromolaena odorata in Nepal.
  22. Kanatani, K., 2013. Calibration of ultrawide fisheye lens cameras by eigenvalue minimization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(4): 813-822.
  23. Kannala, J. and S. S. Brandt, 2006. A generic camera model and calibration method for conventional, wide-angle, and fish-eye lenses. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(8): 1335–1340.
  24. Kim, H., J. Jung and J. Paik, 2016. Fisheye lens camera based surveillance system for wide field of view monitoring. Optik, 127(14): 5636-5646.
  25. Lillesand, T., R. Kiefer and J. Chipman, 2015. Remote sensing and image interpretation. Hoboken, N.J., Wiley, pp. 120.
  26. MacGlone, J., 2004. Manual of photogrammetry. Bethesda, ML: American Soc. for Photogrammetry and Remote Sensing, pp. 879-883.
  27. Mei, C. and P. Rives, 2007. Single view point omnidirectional camera calibration from planar grids. Proceedings of the IEEE International Conference on Robotics and Automation, pp. 3945-3950.
  28. Ogundare, J., 2019. Understanding least squares estimation and geomatics data analysis, John Wiley & Sons, Inc, United States of America, pp. 543-570.
  29. Papo, H. B., 1982. Free-net analysis in close-range photogrammetry. Photogrammetric engineering and remote sensing, 48(4): 571-576.
  30. Park, J., S. Byun and B. Lee, 2009. Lens distortion correction using ideal image coordinates. IEEE Transactions on Consumer Electronics, 55(3): 987-991.
  31. Perfetti, L., C. Polari and F. Fassi, 2017. Fisheye photogrammetry: tests and methodologies for the survey of narrow spaces. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W3, pp. 573-580.
  32. Ray, S.F., 2002. Applied photographic optics, The 3rd edition, Focal Press, pp. 326-331.
  33. Scaramuzza, D., A. Martinelli and R. Siegwart, 2006. A toolbox for easy calibrating omnidirectional cameras, Proceedings to IEEE International Conference on Intelligent Robots and Systems, (IROS). Beijing, China, pp. 5695-5701.
  34. Schneider, D., E. Schwalbe and H.-G. Maas, 2009. Validation of geometric models for fisheye lenses. ISPRS Journal of Photogrammetry and Remote Sensing, 64(3): 259–266.
  35. Schwalbe, E., 2005. Geometric modelling and calibration of fisheye lens camera systems. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 36 (Part 5/W8), (on CD-ROM).
  36. Tommaselli, A. M. G., J. Marcato Jr, M. V. A. Moraes, S. L. A. Silva, and A. O. Artero, 2014. Calibration of panoramic cameras with coded targets and a 3D calibration field. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-3/W1, pp. 137-142.
  37. Van Den Heuvel, F. A., R. Verwaal and B. Beers, 2006. Calibration of fisheye camera systems and the reduction of chromatic aberration. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVI-V5, pp. 1-6.
  38. Wang, X. and T. Clarke, 2001. Separate adjustment in close-range photogrammetry. ISPRS Journal of Photogrammetry and Remote Sensing, 55(5-6): 289-298.
  39. Yang, H. and J. J. Jaw, 2018. Effective implementation of fisheye Lens calibration based on geometric projection model, 39th ACRS 2018 PROCEEDING, Volume 4(5), Calibration and Validation, Kuala Lumpur, Malaysia, pp. 2050-2059.