Title

Fak1a與Wnt5b經由Rac1與Cdc42聯合調控斑馬魚胚早期腔腸化時之細胞遷徙過程

Translated Titles

Focal adhesion kinase 1a and Wnt5b cooperatively mediate gastrulation cell movements via Rac1 and Cdc42

DOI

10.6342/NTU201603706

Authors

洪苡蓁

Key Words

FAK ; Wnt5b ; Rac1 ; Cdc42 ; 胚體趨中與延展作用 ; 外包現象 ; 腔腸化 ; 斑馬魚 ; FAK ; Wnt5b ; Rac1 ; Cdc42 ; convergent extension ; epiboly ; gastrulation ; zebrafish

PublicationName

國立臺灣大學生命科學系學位論文

Volume or Term/Year and Month of Publication

2016年

Academic Degree Category

博士

Advisor

李士傑

Content Language

英文

Chinese Abstract

黏著斑激酶(focal adhesion kinase,FAK)在許多重要的細胞生理過程上扮演著重要的角色,其中包括了胚胎發育及器官發育等過程。儘管我們已知FAK在胚胎發育過程中的重要性,然究竟FAK如何調控早期胚胎發育,又如何在此一時期與其他訊息分子溝通的研究還是很有限。在本論文中,藉由比較fak1a與1b與人類FAK的氨基酸序列, 我發現兩者有高度的相似性。利用mopholino oligonucleotides (MO)抑制蛋白質生成,我觀察到魚胚(morphants)的外包作用(epiboly), 胚體趨中與延展作用(convergent extension)以及下胚層(hypoblast)細胞的移動都受到明顯的影響。藉由細胞的移植實驗, 我發現fak1a所調控的細胞移動受外界環境所影響,肌凝蛋白(filamentous actin,F-actin)在細胞外包作用時所產生的環狀構造(actin ring)在fak1a缺乏的胚胎是不完整的,進而推測其可能為導致胚外包作用缺失的原因。我同時也利用了CRISPR/Cas9的基因修改技術製作出了fak1a的突變魚(mutant),但僅有少部分胚有腔腸化缺陷的表型。然而在mutants與mophants我發現相同的基因有上升之趨勢,此顯示相似的細胞傳導路徑受到了影響,更重要的是我發現Wnt5b可能位於fak1a的上游調控下游路徑以調節細胞移動的過程。藉由mRNA拯救的實驗我發現其下游因子是small GTPase,Rac1與CDC42。總結,我首次在斑馬魚胚腔腸化過程中發現了FAK與WNT5b共同藉由調控Rac1與CDC42影響了肌凝蛋白之動態平衡以控制細胞移動現象。

English Abstract

Focal adhesion kinase is known to mediate multiple vital cellular processes and be involved in embryogenesis and organ development. Despite its necessity, how FAK regulates and integrates with other cellular signals during early embryogenesis still remains poorly understood. Here, I first demonstrated the high sequence similarity of zebrafish fak1a and fak1b to human FAK. Using antisense morpholino (MO), I observed that the loss of Fak1a impaired epiboly, convergence and extension and hypoblast cell migration in a non cell-autonomous manner. Furthermore, I showed clear disturbance of the filamentous actin (F-actin) linkage bundles between actin-ring and yolk syncytial nuclei that appeared to affect epiboly in fak1a morphants. Genetic deletion of fak1a using CRISPR/Cas9 mediated gene editing reveals minor gastrulation defects than that of morphants, but some genes were induced both in morphants and mutants. It suggests that similar molecular pathways were affected. More importantly, I found that overexpression of fak1a or wnt5b mRNA could cross rescue convergence defects induced by wnt5b or fak1a MO, respectively. Both Wnt5b and Fak1a appeared to mediate gastrulation via Rac1 and Cdc42, since both small GTPases could synergistically rescue wnt5b and fak1a morphant phenotypes. Taken together, I demonstrate for the first time the missing functional interaction between Wnt and FAK signaling to mediate gastrulation cell movements via precise regulation of Rac1 and Cdc42 activities and subsequent actin dynamics.

Topic Category 生命科學院 > 生命科學系
生物農學 > 生物科學
Reference
  1. tension-dependent organization of collective cell movements in Xenopus
    連結:
  2. mesendoderm. Dev Biol 394, 340-356.
    連結:
  3. Carvalho, L., Heisenberg, C.P., 2010. The yolk syncytial layer in early zebrafish
    連結:
  4. development. Trends in cell biology 20, 586-592.
    連結:
  5. activation and localization to matrix adhesion sites: a role for betaPIX. Molecular
    連結:
  6. Chatzizacharias, N.A., Kouraklis, G.P., Theocharis, S.E., 2010. The role of focal
    連結:
  7. adhesion kinase in early development. Histology and histopathology 25, 1039-1055.
    連結:
  8. microfilaments during late epiboly in zebrafish embryos. Dev Dyn 231, 313-323.
    連結:
  9. and distribution of paxillin, focal adhesion kinase, and cadherin indicate cooperative
    連結:
  10. Doherty, J.T., Conlon, F.L., Mack, C.P., Taylor, J.M., 2010. Focal Adhesion Kinase is
    連結:
  11. Essential for Cardiac Looping and Multichamber Heart Formation. Genesis 48, 492-
    連結:
  12. cell polarity proteins differentially regulate extracellular matrix organization and
    連結:
  13. assembly during zebrafish gastrulation. Dev Biol 383, 39-51.
    連結:
  14. actin organization and cell motility via Girdin/APE. Developmental cell 9, 389-402.
    連結:
  15. Fonar, Y., Frank, D., 2011. FAK and WNT signaling: the meeting of two pathways in
    連結:
  16. cancer and development. Anti-cancer agents in medicinal chemistry 11, 600-606.
    連結:
  17. Elias, S., Elkouby, Y.M., Frank, D., 2011. Focal adhesion kinase protein regulates
    連結:
  18. Wnt3a gene expression to control cell fate specification in the developing neural
    連結:
  19. plate. Molecular biology of the cell 22, 2409-2421.
    連結:
  20. homolog of vertebrate focal adhesion kinase, supports a role in cell migration in vivo.
    連結:
  21. Proc Natl Acad Sci U S A 96, 14978-14983.
    連結:
  22. organizing the structure and function of FAK. Nature reviews. Molecular cell biology
    連結:
  23. adhesion kinase, FAK. Oncogene 11, 1989-1995.
    連結:
  24. Mesodermal development in mouse embryos mutant for fibronectin. Dev Dyn 207,
    連結:
  25. Hammerschmidt, M., Wedlich, D., 2008. Regulated adhesion as a driving force of
    連結:
  26. specification and movement during vertebrate gastrulation. Current opinion in
    連結:
  27. genetics & development 18, 311-316.
    連結:
  28. 2001. Roles for zebrafish focal adhesion kinase in notochord and somite
    連結:
  29. morphogenesis. Dev Biol 240, 474-487.
    連結:
  30. MAPKAPK2 in morphogenesis during zebrafish development. PLoS genetics 5,
    連結:
  31. Hsu, C.L., Muerdter, C.P., Knickerbocker, A.D., Walsh, R.M., Zepeda-Rivera, M.A.,
    連結:
  32. Iden, S., Collard, J.G., 2008. Crosstalk between small GTPases and polarity proteins
    連結:
  33. in cell polarization. Nat Rev Mol Cell Bio 9, 846-859.
    連結:
  34. focal adhesion contact formation in cells from FAK-deficient mice. Nature 377, 539-
    連結:
  35. Jessen, J.R., 2014. Recent advances in the study of zebrafish extracellular matrix
    連結:
  36. 2003. The role of Ppt/Wnt5 in regulating cell shape and movement during zebrafish
    連結:
  37. Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., Schilling, T.F., 1995.
    連結:
  38. Stages of Embryonic-Development of the Zebrafish. Dev Dynam 203, 253-310.
    連結:
  39. formin 2 and profilin I are required for gastrulation cell movements. PloS one
    連結:
  40. Fisher, S.J., Schlaepfer, D.D., Ilic, D., 2008. Nuclear FAK promotes cell proliferation
    連結:
  41. APC and dishevelled mediates Wnt5a-regulated focal adhesion dynamics in migrating
    連結:
  42. Matsumoto, S., Kikuchi, A., 2012. Regulation of focal adhesion dynamics by Wnt5a
    連結:
  43. Mitra, S.K., Hanson, D.A., Schlaepfer, D.D., 2005. Focal adhesion kinase: in
    連結:
  44. Mitra, S.K., Schlaepfer, D.D., 2006. Integrin-regulated FAK-Src signaling in normal
    連結:
  45. kinase modulates Cdc42 activity downstream of positive and negative axon guidance
    連結:
  46. cues. J Cell Sci 125, 2918-2929.
    連結:
  47. polarity signalling regulates cell adhesion properties in progenitors of the zebrafish
    連結:
  48. laterality organ. Development 137, 3459-3468.
    連結:
  49. eccentric right ventricular hypertrophy in cardiomyocyte focal adhesion kinase (FAK)
    連結:
  50. conditional knockout mice. Proc Natl Acad Sci U S A 105, 6638-6643.
    連結:
  51. P.A., 2012. Activation of endogenous FAK via expression of its amino terminal
    連結:
  52. new insights into FAK regulation and function in early embryonic morphogenesis.
    連結:
  53. Development 140, 4266-4276.
    連結:
  54. FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol
    連結:
  55. Parsons, J.T., Horwitz, A.R., 2003. Cell migration: integrating signals from front to
    連結:
  56. back. Science 302, 1704-1709.
    連結:
  57. 2015. Genetic compensation induced by deleterious mutations but not gene
    連結:
  58. Roszko, I., Sawada, A., Solnica-Krezel, L., 2009. Regulation of convergence and
    連結:
  59. extension movements during vertebrate gastrulation by the Wnt/PCP pathway.
    連結:
  60. Seminars in cell & developmental biology 20, 986-997.
    連結:
  61. J.T., 1992. pp125FAK a structurally distinctive protein-tyrosine kinase associated with
    連結:
  62. focal adhesions. Proc Natl Acad Sci U S A 89, 5192-5196.
    連結:
  63. Schlaepfer, D.D., Mitra, S.K., 2004. Multiple connections link FAK to cell motility
    連結:
  64. and invasion. Curr Opin Genet Dev 14, 92-101.
    連結:
  65. G.E., Frame, M.C., 2007. Focal adhesion kinase controls actin assembly via a FERMmediated
    連結:
  66. reveals its role in angiogenesis and vascular development in late embryogenesis. J
    連結:
  67. Cell Biol 169, 941-952.
    連結:
  68. Noguchi, K., Nakamura, Y., 1998. Functional role of focal adhesion kinase in the
    連結:
  69. process of implantation. Mol Hum Reprod 4, 907-914.
    連結:
  70. Skoglund, P., Keller, R., 2010. Integration of planar cell polarity and ECM signaling
    連結:
  71. Solnica-Krezel, L., 2005. Conserved patterns of cell movements during vertebrate
    連結:
  72. Solnica-Krezel, L., Cooper, M.S., 2002. Cellular and genetic mechanisms of
    連結:
  73. convergence and extension. Results and problems in cell differentiation 40, 136-165.
    連結:
  74. Stylianou, P., Skourides, P.A., 2009. Imaging morphogenesis, in Xenopus with
    連結:
  75. Wnt5b promotes the cell motility essential for metastasis of oral squamous cell
    連結:
  76. Talbot, J.C., Amacher, S.L., 2014. A streamlined CRISPR pipeline to reliably generate
    連結:
  77. embryos. Development 119, 1203-1215.
    連結:
  78. Tsuda, S., Kitagawa, T., Takashima, S., Asakawa, S., Shimizu, N., Mitani, H., Shima,
    連結:
  79. extracellular signals are essential for interkinetic nuclear migration and planar
    連結:
  80. cell migration and morphogenesis at the onset of zebrafish gastrulation. Development
    連結:
  81. Webb, D.J., Donais, K., Whitmore, L.A., Thomas, S.M., Turner, C.E., Parsons, J.T.,
    連結:
  82. Horwitz, A.F., 2004. FAK-Src signalling through paxillin, ERK and MLCK regulates
    連結:
  83. Slusarski, D.C., 2003. Wnt-5/pipetail functions in vertebrate axis formation as a
    連結:
  84. Yang, J.T., Bader, B.L., Kreidberg, J.A., Ullman-Cullere, M., Trevithick, J.E., Hynes,
    連結:
  85. R.O., 1999. Overlapping and independent functions of fibronectin receptor integrins
    連結:
  86. mediates gastrulation cell movements via Cdc42/AKT1 in zebrafish. PloS one 6,
    連結:
  87. isoform inhibits Wnt signaling by destabilizing the nuclear beta-catenin complex.
    連結:
  88. Zhu, Y., Shen, T., Liu, J., Zheng, J., Zhang, Y., Xu, R., Sun, C., Du, J., Chen, Y., Gu,
    連結:
  89. L., 2013. Rab35 is required for Wnt5a/Dvl2-induced Rac1 activation and cell
    連結:
  90. Baker, L.P., Daggett, D.F., Peng, H.B., 1994. Concentration of pp125 focal adhesion
  91. kinase (FAK) at the myotendinous junction. J Cell Sci 107 ( Pt 6), 1485-1497.
  92. Bjerke, M.A., Dzamba, B.J., Wang, C., Desimone, D.W., 2014. FAK is required for
  93. Chang, F., Lemmon, C.A., Park, D., Romer, L.H., 2007. FAK potentiates Rac1
  94. biology of the cell 18, 253-264.
  95. Cheng, J.C., Miller, A.L., Webb, S.E., 2004. Organization and function of
  96. Crawford, B.D., Henry, C.A., Clason, T.A., Becker, A.L., Hille, M.B., 2003. Activity
  97. roles during zebrafish morphogenesis. Molecular biology of the cell 14, 3065-3081.
  98. 504.
  99. Dohn, M.R., Mundell, N.A., Sawyer, L.M., Dunlap, J.A., Jessen, J.R., 2013. Planar
  100. Enomoto, A., Murakami, H., Asai, N., Morone, N., Watanabe, T., Kawai, K.,
  101. Murakumo, Y., Usukura, J., Kaibuchi, K., Takahashi, M., 2005. Akt/PKB regulates
  102. Fonar, Y., Gutkovich, Y.E., Root, H., Malyarova, A., Aamar, E., Golubovskaya, V.M.,
  103. Fox, G.L., Rebay, I., Hynes, R.O., 1999. Expression of DFak56, a Drosophila
  104. Frame, M.C., Patel, H., Serrels, B., Lietha, D., Eck, M.J., 2010. The FERM domain:
  105. 11, 802-814.
  106. Furuta, Y., Ilic, D., Kanazawa, S., Takeda, N., Yamamoto, T., Aizawa, S., 1995.
  107. Mesodermal defect in late phase of gastrulation by a targeted mutation of focal
  108. Georges-Labouesse, E.N., George, E.L., Rayburn, H., Hynes, R.O., 1996.
  109. 145-156.
  110. gastrulation movements. Development 135, 3625-3641.
  111. Henry, C.A., Crawford, B.D., Yan, Y.L., Postlethwait, J., Cooper, M.S., Hille, M.B.,
  112. Holloway, B.A., Gomez de la Torre Canny, S., Ye, Y., Slusarski, D.C., Freisinger,
  113. C.M., Dosch, R., Chou, M.M., Wagner, D.S., Mullins, M.C., 2009. A novel role for
  114. e1000413.
  115. Depner, K.H., Sangesland, M., Cisneros, T.B., Kim, J.Y., Sanchez-Vazquez, P.,
  116. Cherezova, L., Regan, R.D., Bahrami, N.M., Gray, E.A., Chan, A.Y., Chen, T., Rao,
  117. M.Y., Hille, M.B., 2012. Cdc42 GTPase and Rac1 GTPase act downstream of p120
  118. catenin and require GTP exchange during gastrulation of zebrafish mesoderm. Dev
  119. Dyn 241, 1545-1561.
  120. Ilic, D., Furuta, Y., Kanazawa, S., Takeda, N., Sobue, K., Nakatsuji, N., Nomura, S.,
  121. Fujimoto, J., Okada, M., Yamamoto, T., 1995. Reduced cell motility and enhanced
  122. 544.
  123. proteins. Dev Biol.
  124. Kettleborough, R.N., Busch-Nentwich, E.M., Harvey, S.A., Dooley, C.M., de Bruijn,
  125. E., van Eeden, F., Sealy, I., White, R.J., Herd, C., Nijman, I.J., Fenyes, F., Mehroke,
  126. S., Scahill, C., Gibbons, R., Wali, N., Carruthers, S., Hall, A., Yen, J., Cuppen, E.,
  127. Stemple, D.L., 2013. A systematic genome-wide analysis of zebrafish protein-coding
  128. gene function. Nature 496, 494-497.
  129. Kilian, B., Mansukoski, H., Barbosa, F.C., Ulrich, F., Tada, M., Heisenberg, C.P.,
  130. gastrulation. Mechanisms of development 120, 467-476.
  131. Kurayoshi, M., Oue, N., Yamamoto, H., Kishida, M., Inoue, A., Asahara, T., Yasui,
  132. W., Kikuchi, A., 2006. Expression of Wnt-5a is correlated with aggressiveness of
  133. gastric cancer by stimulating cell migration and invasion. Cancer research 66, 10439-
  134. 10448.
  135. Lai, S.L., Chan, T.H., Lin, M.J., Huang, W.P., Lou, S.W., Lee, S.J., 2008. Diaphanousrelated
  136. 3, e3439.
  137. Lim, S.T., Chen, X.L., Lim, Y., Hanson, D.A., Vo, T.T., Howerton, K., Larocque, N.,
  138. and survival through FERM-enhanced p53 degradation. Mol Cell 29, 9-22.
  139. Matsumoto, S., Fumoto, K., Okamoto, T., Kaibuchi, K., Kikuchi, A., 2010. Binding of
  140. cells. The EMBO journal 29, 1192-1204.
  141. signaling. Methods Mol Biol 839, 215-227.
  142. command and control of cell motility. Nature reviews. Molecular cell biology 6, 56-
  143. and cancer cells. Current opinion in cell biology 18, 516-523.
  144. Moeller, M.L., Shi, Y., Reichardt, L.F., Ethell, I.M., 2006. EphB receptors regulate
  145. dendritic spine morphogenesis through the recruitment/phosphorylation of focal
  146. adhesion kinase and RhoA activation. The Journal of biological chemistry 281, 1587-
  147. 1598.
  148. Myers, J.P., Robles, E., Ducharme-Smith, A., Gomez, T.M., 2012. Focal adhesion
  149. Oteiza, P., Koppen, M., Krieg, M., Pulgar, E., Farias, C., Melo, C., Preibisch, S.,
  150. Muller, D., Tada, M., Hartel, S., Heisenberg, C.P., Concha, M.L., 2010. Planar cell
  151. Peng, X., Wu, X., Druso, J.E., Wei, H., Park, A.Y., Kraus, M.S., Alcaraz, A., Chen, J.,
  152. Chien, S., Cerione, R.A., Guan, J.L., 2008. Cardiac developmental defects and
  153. Petridou, N.I., Stylianou, P., Christodoulou, N., Rhoads, D., Guan, J.L., Skourides,
  154. domain in Xenopus embryos. PloS one 7, e42577.
  155. Petridou, N.I., Stylianou, P., Skourides, P.A., 2013. A dominant-negative provides
  156. Quach, N.L., Rando, T.A., 2006. Focal adhesion kinase is essential for
  157. costamerogenesis in cultured skeletal muscle cells. Dev Biol 293, 38-52.
  158. Reyon, D., Tsai, S.Q., Khayter, C., Foden, J.A., Sander, J.D., Joung, J.K., 2012.
  159. 30, 460-465.
  160. Ridley, A.J., Schwartz, M.A., Burridge, K., Firtel, R.A., Ginsberg, M.H., Borisy, G.,
  161. Ridyard, M.S., Sanders, E.J., 2001. Inhibition of focal adhesion kinase expression
  162. correlates with changes in the cytoskeleton but not apoptosis in primary cultures of
  163. chick embryo cells. Cell Biol Int 25, 215-226.
  164. Rossi, A., Kontarakis, Z., Gerri, C., Nolte, H., Holper, S., Kruger, M., Stainier, D.Y.,
  165. knockdowns. Nature 524, 230-233.
  166. Schaller, M.D., Borgman, C.A., Cobb, B.S., Vines, R.R., Reynolds, A.B., Parsons,
  167. Serrels, B., Serrels, A., Brunton, V.G., Holt, M., McLean, G.W., Gray, C.H., Jones,
  168. interaction with the Arp2/3 complex. Nature cell biology 9, 1046-1056.
  169. Shen, T.L., Park, A.Y., Alcaraz, A., Peng, X., Jang, I., Koni, P., Flavell, R.A., Gu, H.,
  170. Guan, J.L., 2005. Conditional knockout of focal adhesion kinase in endothelial cells
  171. Shiokawa, S., Yoshimura, Y., Nagamatsu, S., Sawa, H., Hanashi, H., Sakai, K.,
  172. in elongation of the vertebrate body plan. Current opinion in cell biology 22, 589-596.
  173. gastrulation. Current biology : CB 15, R213-228.
  174. Solnica-Krezel, L., Driever, W., 1994. Microtubule arrays of the zebrafish yolk cell:
  175. organization and function during epiboly. Development 120, 2443-2455.
  176. Spicer, O.S., Wong, T.T., Zmora, N., Zohar, Y., 2016. Targeted Mutagenesis of the
  177. Hypophysiotropic Gnrh3 in Zebrafish (Danio rerio) Reveals No Effects on
  178. Reproductive Performance. PLoS One 11, e0158141.
  179. Quantum Dot nanocrystals. Mechanisms of development 126, 828-841.
  180. Takeshita, A., Iwai, S., Morita, Y., Niki-Yonekawa, A., Hamada, M., Yura, Y., 2014.
  181. carcinoma through active Cdc42 and RhoA. International journal of oncology 44, 59-
  182. 68.
  183. zebrafish frameshifting alleles. Zebrafish 11, 583-585.
  184. Thisse, C., Thisse, B., Schilling, T.F., Postlethwait, J.H., 1993. Structure of the
  185. zebrafish snail1 gene and its expression in wild-type, spadetail and no tail mutant
  186. A., Tsutsumi, M., Hori, H., Naruse, K., Ishikawa, Y., Takeda, H., 2010. FAK-mediated
  187. divisions in the neuroepithelium. J Cell Sci 123, 484-496.
  188. Ulrich, F., Concha, M.L., Heid, P.J., Voss, E., Witzel, S., Roehl, H., Tada, M., Wilson,
  189. S.W., Adams, R.J., Soll, D.R., Heisenberg, C.P., 2003. Slb/Wnt11 controls hypoblast
  190. 130, 5375-5384.
  191. adhesion disassembly. Nature cell biology 6, 154-161.
  192. Westfall, T.A., Brimeyer, R., Twedt, J., Gladon, J., Olberding, A., Furutani-Seiki, M.,
  193. negative regulator of Wnt/beta-catenin activity. J Cell Biol 162, 889-898.
  194. in early mesodermal development. Dev Biol 215, 264-277.
  195. Yeh, C.M., Liu, Y.C., Chang, C.J., Lai, S.L., Hsiao, C.D., Lee, S.J., 2011. Ptenb
  196. e18702.
  197. Yoshizuka, N., Chen, R.M., Xu, Z., Liao, R., Hong, L., Hu, W.Y., Yu, G., Han, J.,
  198. Chen, L., Sun, P., 2012. A novel function of p38-regulated/activated kinase in
  199. endothelial cell migration and tumor angiogenesis. Mol Cell Biol 32, 606-618.
  200. Zhang, P., Bai, Y., Lu, L., Li, Y., Duan, C., 2016. An oxygen-insensitive Hif-3alpha
  201. Elife 5.
  202. Zhang, T., Yao, S., Wang, P., Yin, C., Xiao, C., Qian, M., Liu, D., Zheng, L., Meng,
  203. W., Zhu, H., Liu, J., Xu, H., Mo, X., 2011. ApoA-II directs morphogenetic
  204. movements of zebrafish embryo by preventing chromosome fusion during nuclear
  205. division in yolk syncytial layer. The Journal of biological chemistry 286, 9514-9525.
  206. migration in MCF-7 breast cancer cells. Cellular signalling 25, 1075-1085.