Title

扁圓土星的重力力矩:土衛二物理天平動之研究

Translated Titles

Gravitational Torque by an Oblate Saturn: Case Study of Enceladus’ Physical Libration

DOI

10.6342/NTU201900230

Authors

施勝安

Key Words

重力力矩 ; 物理天平動 ; 扁圓土星 ; 土衛二 ; 內部結構 ; Gravitational Torque ; Physical Libration ; Oblate Saturn ; Enceladus ; Interior Structure

PublicationName

臺灣大學物理學研究所學位論文

Volume or Term/Year and Month of Publication

2019年

Academic Degree Category

碩士

Advisor

趙丰

Content Language

英文

Chinese Abstract

土星施加在其衛星上的重力力矩對於他們各自的轉動力學扮演著重要的角色,其中土衛二在經度上的物理天平動已經被精確的測量,並且被用來約束其內部的結構。目前相信土衛二的內部是由三層主要的結構組成:岩石內核、液態海洋、冰殼層。然而,儘管土星是太陽系中最扁的行星之一,並且土星和土衛二之間的距離相對於土星表面半徑的差距不大,重力力矩的公式中排除了非球對稱土星形狀的效應。本研究中,我們利用多極展開的方法推導一般性的力矩公式,該公式能同時考慮任意形狀的土星的影響。對於扁圓土星來說,常規的力矩公式需要乘上一個修正係數,該係數正比於土星的扁率以及土星土衛二之間距離平方的倒數。帶入數值後得到該修正係數大約為千分之二,而相對應土衛二冰層厚度的估算被修正的幅度大約小於百分之一。

English Abstract

The gravitational torque of Saturn exerted on its moons plays an important role in their rotational dynamics, one of which, known as the physical libration in longitude, has been accurately measured for Enceladus (Thomas et al., 2016). This observation has been used to constrain the interior structure of Enceladus, which is believed to consist of three layers: rock core, water ocean, and ice shell. However, the formulation of the gravitational torque excludes the non-spherical shape of Saturn itself, even though Saturn is one of the most oblate planets in the Solar System and its distance to Enceladus is comparable to its mean radius. In this study, we derive the general torque equation using multipole expansion to include the effect due to the arbitrary shape of Saturn. For an oblate Saturn, the conventional torque is multiplied by a correction factor, which depends on Saturn’s oblateness and its distance to Enceladus. Given the physical parameters, the correction to the torque is about a few thousandth and the resultant correction to the estimate of Enceladus’ shell thickness is less than one percent.

Topic Category 基礎與應用科學 > 物理
理學院 > 物理學研究所
Reference
  1. References
  2. Anderson, J. D., & Schubert, G. (2007). Saturn's gravitational field, internal rotation, and interior structure. Science, 317(5843), 1384-1387.
  3. Arfken, G., Weber, H., & Harris, F. E. (2012). Mathematical Methods for Physicists. Academic Press.
  4. Baland, R. M., & Van Hoolst, T. (2010). Librations of the Galilean satellites: The influence of global internal liquid layers. Icarus, 209(2), 651-664.
  5. Baland, R. M., Yseboodt, M., & Van Hoolst, T. (2016). The obliquity of Enceladus. Icarus, 268, 12-31.
  6. Borderies, N. (1978). Mutual gravitational potential of N solid bodies. Celestial Mechanics, 18(3), 295-307.
  7. Boué, G. (2017). The two rigid body interaction using angular momentum theory formulae. Celestial Mechanics and Dynamical Astronomy, 128(2-3), 261-273.
  8. Bullen, K. E. (1975). The Earth’s density. UK: Chapman and Hall.
  9. Chao, B. F. (2017a). Dynamics of axial torsional libration under the mantle‐inner core gravitational interaction. Journal of Geophysical Research: Solid Earth, 122(1), 560-571.
  10. Chao, B. F. (2017b). Dynamics of the inner core wobble under mantle‐inner core gravitational interactions. Journal of Geophysical Research: Solid Earth, 122(9), 7437-7448.
  11. Chao, B. F., & Gross, R. S. (1987). Changes in the Earth's rotation and low‐degree gravitational field induced by earthquakes. Geophysical Journal of the Royal Astronomical Society, 91(3), 569-596.
  12. Choblet, G., Tobie, G., Sotin, C., Běhounková, M., Čadek, O., Postberg, F., & Souček, O. (2017). Powering prolonged hydrothermal activity inside Enceladus. Nature Astronomy, 1(12), 841.
  13. Comstock, R. L., & Bills, B. G. (2003). A solar system survey of forced librations in longitude. Journal of Geophysical Research: Planets, 108(E9), 5100.
  14. Cook, A. H. (1980). Interior of the Planets. New York, NY: Cambridge University Press.
  15. Dahlen, F., & Tromp, J. (1998). Theoretical Global Seismology. Princeton University Press.
  16. de Pater, I., & Lissauer, J. J. (2015). Planetary sciences. Cambridge University Press.
  17. Dumberry, M. (2008). Gravitational torque on the inner core and decadal polar motion. Geophysical Journal International, 172(3), 903-920.
  18. Efroimsky, M., & Williams, J. G. (2009). Tidal torques: a critical review of some techniques. Celestial Mechanics and Dynamical Astronomy, 104(3), 257-289.
  19. Frouard, J., & Efroimsky, M. (2017). Tides in a body librating about a spin–orbit resonance: generalisation of the Darwin–Kaula theory. Celestial Mechanics and Dynamical Astronomy, 129(1-2), 177-214.
  20. Goldreich, P. M., & Mitchell, J. L. (2010). Elastic ice shells of synchronous moons: Implications for cracks on Europa and non-synchronous rotation of Titan. Icarus, 209(2), 631-638.
  21. Griffiths, D. J. (2005). Introduction to Quantum Mechanics. Pearson Prentice Hall.
  22. Henrard, J. (2005a). Additions to the theory of the rotation of Europa. Celestial Mechanics and Dynamical Astronomy, 93(1-4), 101-112.
  23. Henrard, J. (2005b). The rotation of Io. Icarus, 178(1), 144-153.
  24. Hou, X., Scheeres, D. J., & Xin, X. (2017). Mutual potential between two rigid bodies with arbitrary shapes and mass distributions. Celestial Mechanics and Dynamical Astronomy, 127(3), 369-395.
  25. Hsu, H. W., Postberg, F., Sekine, Y., Shibuya, T., Kempf, S., Horányi, M., et al. (2015). Ongoing hydrothermal activities within Enceladus. Nature, 519(7542), 207.
  26. Hubbard, W. B. (1984). Planetary Interiors. New York, NY: Van Nostrand Reinhold Company Inc.
  27. Iess, L., Folkner, W. M., Durante, D., Parisi, M., Kaspi, Y., Galanti, E., et al. (2018). Measurement of Jupiter’s asymmetric gravity field. Nature, 555(7695), 220.
  28. Iess, L., Stevenson, D. J., Parisi, M., Hemingway, D., Jacobson, R. A., Lunine, J. I., et al. (2014). The gravity field and interior structure of Enceladus. Science, 344(6179), 78-80.
  29. Jackson, J. D. (1975). Classical Electrodynamics. New York, NY: John Wiley & Sons.
  30. Jara-Orué, H. M., & Vermeersen, B. L. (2014). The forced libration of Europa’s deformable shell and its dependence on interior parameters. Icarus, 229, 31-44.
  31. Kaula, W. M. (2000). Theory of Satellite Geodesy. Mineola, NY: Dover Publications.
  32. Lemasquerier, D., Grannan, A. M., Vidal, J., Cébron, D., Favier, B., Le Bars, M., & Aurnou, J. M. (2017). Libration‐driven flows in ellipsoidal shells. Journal of Geophysical Research: Planets, 122(9), 1926-1950.
  33. Liu, H. S., & Chao, B. F. (1991). The Earth's equatorial principal axes and moments of inertia. Geophysical Journal International, 106(3), 699-702.
  34. Maciejewski, A. J. (1995). Reduction, relative equilibria and potential in the two rigid bodies problem. Celestial Mechanics and Dynamical Astronomy, 63(1), 1-28.
  35. McKinnon, W. B. (2015). Effect of Enceladus's rapid synchronous spin on interpretation of Cassini gravity. Geophysical Research Letters, 42(7), 2137-2143.
  36. Moritz, H. (1990). The Figure of the Earth. Wichmann.
  37. Murray, C. D., & Dermott, S. F. (1999). Solar System Dynamics. New York, NY: Cambridge University Press.
  38. Nayar, K. G., Sharqawy, M. H., & Banchik, L. D. (2016). Thermophysical properties of seawater: a review and new correlations that include pressure dependence. Desalination, 390, 1-24.
  39. Nimmo, F., Bills, B. G., & Thomas, P. C. (2011). Geophysical implications of the long‐wavelength topography of the Saturnian satellites. Journal of Geophysical Research: Planets, 116(E11001).
  40. Porco, C. C., Helfenstein, P., Thomas, P. C., Ingersoll, A. P., Wisdom, J., West, R., et al. (2006). Cassini observes the active south pole of Enceladus. Science, 311(5766), 1393-1401.
  41. Rappaport, N., Bertotti, B., Giampieri, G., & Anderson, J. D. (1997). Doppler measurements of the quadrupole moments of Titan. Icarus, 126(2), 313-323.
  42. Roncoli, R. B. (2005). Lunar constants and models document. JPL D-32296.
  43. Rotenberg, M., Bivins, R., Metropolis, N., & Wooten Jr., J. K. (1959). The 3-j and 6-j Symbols. The MIT Press.
  44. Schubert, G., Anderson, J. D., Travis, B. J., & Palguta, J. (2007). Enceladus: Present internal structure and differentiation by early and long-term radiogenic heating. Icarus, 188(2), 345-355.
  45. Stacey, F. D., & Davis, P. M. (2008). Physics of the Earth. New York, NY: Cambridge University Press.
  46. Tajeddine, R., Rambaux, N., Lainey, V., Charnoz, S., Richard, A., Rivoldini, A., & Noyelles, B. (2014). Constraints on Mimas’ interior from Cassini ISS libration measurements. Science, 346(6207), 322-324.
  47. Thomas, P. C. (2010). Sizes, shapes, and derived properties of the saturnian satellites after the Cassini nominal mission. Icarus, 208(1), 395-401.
  48. Thomas, P. C., Tajeddine, R., Tiscareno, M. S., Burns, J. A., Joseph, J., Loredo, T. J.,et al. (2016). Enceladus’s measured physical libration requires a global subsurface ocean. Icarus, 264, 37-47.
  49. Thornton, S. T., & Marion, J. B. (2008) Classical Dynamics of Particles and Systems. Cengage Learning.
  50. Tough, R. J., & Stone, A. J. (1977). Properties of the regular and irregular solid harmonics. Journal of Physics A: Mathematical and General, 10(8), 1261.
  51. Van Hoolst, T., & Dehant, V. (2002). Influence of triaxiality and second-order terms in flattenings on the rotation of terrestrial planets: I. Formalism and rotational normal modes. Physics of the Earth and Planetary Interiors, 134(1-2), 17-33.
  52. Van Hoolst, T., Baland, R. M., & Trinh, A. (2013). On the librations and tides of large icy satellites. Icarus, 226(1), 299-315.
  53. Van Hoolst, T., Baland, R. M., & Trinh, A. (2016). The diurnal libration and interior structure of Enceladus. Icarus, 277, 311-318.
  54. Van Hoolst, T., Rambaux, N., Karatekin, Ö., & Baland, R. M. (2009). The effect of gravitational and pressure torques on Titan's length-of-day variations. Icarus, 200(1), 256-264.
  55. Van Hoolst, T., Rambaux, N., Karatekin, Ö., Dehant, V., & Rivoldini, A. (2008). The librations, shape, and icy shell of Europa. Icarus, 195(1), 386-399.
  56. Xu, S., Crossley, D., & Szeto, A. M. K. (2000). Variations in length of day and inner core differential rotation from gravitational coupling. Physics of the Earth and Planetary Interiors, 117(1-4), 95-110.