Title

彈性體連結之機器蛇的研發與最佳避障路徑規劃

Translated Titles

Development of a Snake-like Robot with Flexible Connectors and Optimal Path Planning for Obstacle Avoidance

DOI

10.6342/NTU.2004.01677

Authors

李曉芳

Key Words

機器人 ; 蛇 ; 路徑規劃 ; 避障 ; Path planning ; Robot ; Snake ; Obstacle avoidance

PublicationName

臺灣大學生物產業機電工程學研究所學位論文

Volume or Term/Year and Month of Publication

2004年

Academic Degree Category

碩士

Advisor

周瑞仁

Content Language

繁體中文

Chinese Abstract

本研究發展一組以彈性體作為連結之機器蛇,並設計一套最佳避障路徑搜尋法。機器蛇由五節模組化的單體所構成,每個單體擁有兩個步進馬達分別驅動左右輪,單體之間以彈簧或海綿等彈性體作為連結,整條機器蛇由十顆微控制器擔任信號處理、協調、控制與通訊等任務。路徑規劃之目的在於找出最短避障路徑。本研究將障礙物近似簡化為圓形,以起點與終點連線當主軸,首先對主軸上的圓做切線,規劃以切線和圓弧銜接而成的可行路徑。利用簡單的幾何關係比較模式比較路徑長度並界定可能為最短路徑之搜尋範圍。此方法可以縮小搜尋空間,並且大幅降低需實際計算路徑長度之運算量。同時,本研究亦提出視窗法(Windowing)求取機器蛇的容許速度,使得機器蛇各單體動作協調一致,而不致解體。

English Abstract

The study develops a snake-like robot with a flexible body and also presents a novel approach to determine an optimal path for obstacle avoidance. The snake-like robot consists of five modular units. Each unit is driven by two stepper motors in a differential way and connected by springs or sponges. Ten microcontrollers are incorporated into the design of the robot and are primarily used for signal processing, motion coordination, control and communication. The purpose of path planning in the study is to find an optimal way from a starting position to a target point without a collision with obstacles. To simplify the planning process, we describe obstacles approximately by circles. Feasible collision-free paths are simply formed by lines tangent to the circles and arcs on the circles. A length comparison approach based on geometric relationship is developed to examine the length of paths and to reduce the searching space of feasible optimal paths. Consequently, the paths necessary to calculate their length for comparison with others could decrease dramatically. Furthermore, the study also proposes a windowing approach to decide the feasible velocity for the snake-like robot to move in accord from falling apart.

Topic Category 生物資源暨農學院 > 生物產業機電工程學研究所
生物農學 > 生物環境與多樣性
工程學 > 電機工程
Reference
  1. 4. 林彥誠。2004。彈性體連結之機器蛇的研發與其最佳速度之規劃。碩士論文。台北:國立台灣大學生物產業機電工程研究所。
    連結:
  2. 8. Endo, G., K. Togawa and S. Hirose. 1993. Design and Motion Planning of a Mechanical Snake. IEEE Transactions On Systems, 23(4).
    連結:
  3. 11. iRobot. Robots. 16 Apr. 2004. On-line. Available from
    連結:
  4. 12. Latombe, J.C. 1991. Robot Motion Planning. Kluwer Academic Pulishers.
    連結:
  5. 13. Ma, S. 1999. Analysis of Snake Movement Forms for Realization of Snake-like Robots. IEEE International Conference on Robotics and Automation.
    連結:
  6. 14. Mori, M. and S. Hirose. 2001. Development of Active Cord Mechanism ACM-R3 with 3D Mobility. IEEE International Conference on Intelligent Robots and Systems.
    連結:
  7. 15. NASA. Snakebot. 18 Dec. 2003. On-line. Available from
    連結:
  8. 17. Paap, K.L., R. Linnemann, B. Klaassen and J. Vollmer. 1999. Motion control of a Snakelike Robot. IEEE.
    連結:
  9. 18. Paap, K.L. and B. Klaassen. 1999. GMD-Snake2:A Snake-like Robot Driven by Wheels and a Method for Motion Control. IEEE.
    連結:
  10. 19. Sethian, J.A. 1995. A Fast Marching Level Set Method for monotonically Advancing Fronts. Proceeding of the National Academy of Science.
    連結:
  11. 22. Shan, Y. and Y. Koren. 1993. Design and Motion Planning of a Mechanical Snake. IEEE Transaction on Systems, Man and Cybernetics, 23(4).
    連結:
  12. 24. Togawa, K., M. Mori and S. Hirose. 2000. Study on Three-dimensional Active Cord Mechanism: Development of ACM-R2. IEEE International Conference on Intelligent Robots and Systems.
    連結:
  13. 1. 朱明毅。2001。傳播介面模型於機器人避撞運動規劃之應用。博士論文。嘉義:國立中正大學電機工程研究所。
  14. 2. 金祖永。2001。結構化環境中平滑軌道之避障規劃。碩士論文。台北:國立台灣大學生物產業機電工程研究所。
  15. 3. 林伸茂。2002。8051單晶片徹底研究實習篇。台北:旗標。
  16. 5. 周瑞仁、楊棧雲。2003。控制工程與生命科學的整合與應用。資訊科技在農業之應用研討會論文集。pp.99-104。
  17. 6. 彼得˙曼瑟(Peter Menzel)、費斯˙德魯修(Faith D’Aluisio)。林文源譯。2002。機器人的進化:人工智慧與機器人學的新世紀。台北:商周。
  18. 7. 郭倫嘉。1995。自動導引車在室內環境中的導引作業。碩士論文。台北:國立台灣大學生物產業機電工程研究所。
  19. 9. Hirose, S. 1993. Biologically Inspired Robots (Snake-like Locomotor and Manipulator). Oxford University Press.
  20. 10. Hirose and Yoneda Robotics Lab. Snake-like Robots. 23 Oct. 2003. On-line. Available from http://www-robot.mes.titech.ac.jp/robot/snake_e.html
  21. http://www.irobot.com/rd/p05_Gecko.asp
  22. http://www.irobot.com/rd/p10_Ariel.asp
  23. http://www.roombavac.com/homepage.asp
  24. http://amesnews.arc.nasa.gov/releases/2000/00_66AR.html
  25. 16. Paap, K.L., M. Dehlwisch and B. Klaassen. 1996. GMD-Snake: A Semi-autonomous Snake-like Robot. DARS ’96.
  26. 20. Sethian, J.A. 1999. Fast Marching Methods. Society for Industrial and Applied Mathematics.
  27. 21. Sethian, J.A. 1999. Level Set Methods and Fast Marching Methods. Combridge University Press.
  28. 23. Sony. Aibo. 16 Apr. 2004. On -line. Available from http://www.sony.net/Products/aibo/
Times Cited
  1. 廖建偉(2010)。四節機器人之DSP控制系統設計。淡江大學機械與機電工程學系碩士班學位論文。2010。1-77。 
  2. 劉志原(2007)。四節機器人之控制器設計。淡江大學機械與機電工程學系碩士班學位論文。2007。1-66。 
  3. 廖培丞(2007)。DSP主控之四節機器人運動控制。淡江大學機械與機電工程學系碩士班學位論文。2007。1-96。 
  4. 張昱升(2005)。四節機器人之研究。淡江大學機械與機電工程學系碩士班學位論文。2005。1-87。 
  5. 吳宥儒(2015)。機器人管道內部運動、採樣與介面設計。中原大學電機工程研究所學位論文。2015。1-86。 
  6. 林彥誠(2004)。彈性體連結之機器蛇的研發與其最佳速度之規劃。臺灣大學生物產業機電工程學研究所學位論文。2004。1-111。