Title

使用大氣電漿製程製作石墨烯超級電容及石墨烯電化學感測器

Translated Titles

Reduced graphene oxide supercapacitor and electrochemical sensor fabricated using atmospheric pressure plasma jet

DOI

10.6342/NTU201702096

Authors

楊承翰

Key Words

常壓噴射電漿 ; 還原氧化石墨烯 ; 奈米多孔性材料 ; 多巴胺 ; 超級電容 ; 電化學感測器 ; atmospheric pressure plasma ; reduced graphene oxides ; nanoporous materials ; dopamine ; supercapacitor ; electrochemical sensor

PublicationName

臺灣大學應用力學研究所學位論文

Volume or Term/Year and Month of Publication

2017年

Academic Degree Category

碩士

Advisor

陳建彰

Content Language

繁體中文

Chinese Abstract

本研究第一部分係利用氮氣直流脈衝常壓噴射電漿來製作一以聚乙烯醇/硫酸(polyvinyl alcohol (PVA)/sulfuric acid (H2SO4))凝膠態電解質構成之可撓性還原氧化石墨烯(rGO, reduced graphene oxide)超級電容,在循環伏安法以掃描速率為2 mV · s−1的測試條件下,測得其面積電容 (Areal capacitance)為47.03 mF · cm−2,且在各種不同之曲率半徑下無明顯之下降,此外,經過1000次循環伏安法測試後,平坦時之電容保持率 (Capacitance retention rate)為100%,而在曲率半徑為0.55公分時之彎矩狀態下為98.6%,證實了本研究所製作出來之可撓性超級電容具有優異的穩定性。 而本研究第二部分係利用一經由常壓噴射電漿處理之還原氧化石墨烯於網印碳電極上的電化學感測器與3D列印微流體通道所整合出的原型裝置進行研究。此原型裝置係用來檢測含有不同濃度多巴胺(DA, dopamine)之磷酸鹽緩衝生理鹽水(PBS, phosphate buffered saline)溶液。在經由常壓噴射電漿鍛燒後之還原氧化石墨烯塗層能夠顯著地增強多巴胺檢測時之電化學信號18倍,顯示出一經由常壓噴射電漿鍛燒之還原氧化石墨烯具有電催化效果。此外,從X光電子頻譜分析(XPS, X-ray photoelectron spectroscopy)結果可知,經由常壓噴射電漿鍛燒之還原氧化石墨烯於網印碳電極上具有更多含量的含氧表面官能基團,因而使其之電化學反應性增強。而在含有干擾物的測試中,當存在著具有相當濃度之尿酸 (UA, uric acid)以及抗壞血酸 (AA, ascorbic acid)等干擾物下,各種濃度之多巴胺溶液的循環伏安曲線以及線性掃描伏安曲線亦能夠明顯地區分出來。

English Abstract

In the first part, we use a nitrogen dc-pulse atmospheric-pressure plasma jet (APPJ) to fabricate a flexible reduced graphene oxide (rGO) supercapacitor with polyvinyl alcohol (PVA)/sulfuric acid (H2SO4) gel electrolyte. An areal capacitance of 47.03 mF · cm−2 (evaluated using cyclic voltammetry (CV) under a potential scan rate of 2 mV · s−1) is achieved. The supercapacitor can be operated without apparent degradation under bending with a bending radius of 0.55 cm. After a 1000 cycle CV stability test, the capacitance retention rate is 100% when flat and is 98.6% under bending (bending radius = 0.55 cm), indicating promising stability of the APPJ-processed flexible supercapacitor. In the second part, we report the prototype investigation of APPJ-processed reduced graphene oxide (rGO) modified carbon electrochemical sensors integrated with 3D-printed microfluidic channels. Dopamine (DA) solutions with various concentrations were used for the model test. The APPJ-calcined rGO coating significantly enhances the electrochemical signal of DA detection by 18 times. X-ray photoelectron spectroscopy (XPS) shows that APPJ-calcined rGO-modified carbon electrodes have more oxygen-containing surface groups, leading to the enhanced electrochemical reactivity. CV curves of various DA concentration solutions are well-distinguishable in the presence of interference agents of uric acid (UA) and ascorbic acid (AA).

Topic Category 基礎與應用科學 > 物理
工學院 > 應用力學研究所
Reference
  1. [1] W. K. Chee, H. N. Lim, Z. Zainal, N. M. Huang, I. Harrison, and Y. Andou, "Flexible Graphene-Based Supercapacitors: A Review," The Journal of Physical Chemistry C, vol. 120, pp. 4153-4172, 2016.
    連結:
  2. [2] F. Li, J. Song, H. Yang, S. Gan, Q. Zhang, D. Han, et al., "One-step synthesis of graphene/SnO2 nanocomposites and its application in electrochemical supercapacitors," Nanotechnology, vol. 20, p. 455602, Nov 11 2009.
    連結:
  3. [3] Y. Xu, Z. Lin, X. Huang, Y. Liu, Y. Huang, and X. Duan, "Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films," ACS nano, vol. 7, pp. 4042-4049, 2013.
    連結:
  4. [4] X. Cheng, X. Gui, Z. Lin, Y. Zheng, M. Liu, R. Zhan, et al., "Three-dimensional α-Fe2O3/carbon nanotube sponges as flexible supercapacitor electrodes," J. Mater. Chem. A, vol. 3, pp. 20927-20934, 2015.
    連結:
  5. [5] G. S. Gund, D. P. Dubal, N. R. Chodankar, J. Y. Cho, P. Gomez-Romero, C. Park, et al., "Low-cost flexible supercapacitors with high-energy density based on nanostructured MnO2 and Fe2O3 thin films directly fabricated onto stainless steel," Sci Rep, vol. 5, p. 12454, Jul 24 2015.
    連結:
  6. [6] C.-H. Xu, P.-Y. Shen, Y.-F. Chiu, P.-W. Yeh, C.-C. Chen, L.-C. Chen, et al., "Atmospheric pressure plasma jet processed nanoporous Fe 2 O 3 /CNT composites for supercapacitor application," Journal of Alloys and Compounds, vol. 676, pp. 469-473, 2016.
    連結:
  7. [7] Y. Wang, J. Chen, J. Cao, Y. Liu, Y. Zhou, J.-H. Ouyang, et al., "Graphene/carbon black hybrid film for flexible and high rate performance supercapacitor," Journal of Power Sources, vol. 271, pp. 269-277, 2014.
    連結:
  8. [8] M. Chen, H. Wang, L. Li, Z. Zhang, C. Wang, Y. Liu, et al., "Novel and facile method, dynamic self-assemble, to prepare SnO(2)/rGO droplet aerogel with complex morphologies and their application in supercapacitors," ACS Appl Mater Interfaces, vol. 6, pp. 14327-37, Aug 27 2014.
    連結:
  9. [9] Q. Chen, Y. Meng, C. Hu, Y. Zhao, H. Shao, N. Chen, et al., "MnO2-modified hierarchical graphene fiber electrochemical supercapacitor," Journal of Power Sources, vol. 247, pp. 32-39, 2014.
    連結:
  10. [10] K. C. Ng, S. Zhang, C. Peng, and G. Z. Chen, "Individual and bipolarly stacked asymmetrical aqueous supercapacitors of CNTs/SnO2 and CNTs/MnO2 nanocomposites," Journal of the Electrochemical Society, vol. 156, pp. A846-A853, 2009.
    連結:
  11. [11] X. Liu, G. Du, J. Zhu, Z. Zeng, and X. Zhu, "NiO/LaNiO3 film electrode with binder-free for high performance supercapacitor," Applied Surface Science, vol. 384, pp. 92-98, 2016.
    連結:
  12. [12] C.-H. Xu, Y.-F. Chiu, P.-W. Yeh, and J.-Z. Chen, "SnO2/CNT nanocomposite supercapacitors fabricated using scanning atmospheric-pressure plasma jets," Materials Research Express, vol. 3, p. 085002, 2016.
    連結:
  13. [13] A. Davies, P. Audette, B. Farrow, F. Hassan, Z. Chen, J.-Y. Choi, et al., "Graphene-Based Flexible Supercapacitors: Pulse-Electropolymerization of Polypyrrole on Free-Standing Graphene Films," The Journal of Physical Chemistry C, vol. 115, pp. 17612-17620, 2011.
    連結:
  14. [14] H. Zhou, G. Han, Y. Xiao, Y. Chang, and H.-J. Zhai, "Facile preparation of polypyrrole/graphene oxide nanocomposites with large areal capacitance using electrochemical codeposition for supercapacitors," Journal of Power Sources, vol. 263, pp. 259-267, 2014.
    連結:
  15. [15] Z.-A. Hu, Y.-L. Xie, Y.-X. Wang, L.-P. Mo, Y.-Y. Yang, and Z.-Y. Zhang, "Polyaniline/SnO2 nanocomposite for supercapacitor applications," Materials Chemistry and Physics, vol. 114, pp. 990-995, 2009.
    連結:
  16. [16] K. Gao, Z. Shao, J. Li, X. Wang, X. Peng, W. Wang, et al., "Cellulose nanofiber–graphene all solid-state flexible supercapacitors," J. Mater. Chem. A, vol. 1, pp. 63-67, 2013.
    連結:
  17. [17] M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, "Graphene-based ultracapacitors," Nano letters, vol. 8, pp. 3498-3502, 2008.
    連結:
  18. [18] B. G. Choi, S.-J. Chang, H.-W. Kang, C. P. Park, H. J. Kim, W. H. Hong, et al., "High performance of a solid-state flexible asymmetric supercapacitor based on graphene films," Nanoscale, vol. 4, pp. 4983-4988, 2012.
    連結:
  19. [19] M. F. El-Kady, V. Strong, S. Dubin, and R. B. Kaner, "Laser scribing of high-performance and flexible graphene-based electrochemical capacitors," Science, vol. 335, pp. 1326-1330, 2012.
    連結:
  20. [20] Y. Huang, J. Liang, and Y. Chen, "An overview of the applications of graphene-based materials in supercapacitors," Small, vol. 8, pp. 1805-34, Jun 25 2012.
    連結:
  21. [21] L. Wang, L. Sun, C. Tian, T. Tan, G. Mu, H. Zhang, et al., "A novel soft template strategy to fabricate mesoporous carbon/graphene composites as high-performance supercapacitor electrodes," RSC Advances, vol. 2, p. 8359, 2012.
    連結:
  22. [22] S. Zhou, H. Zhang, Q. Zhao, X. Wang, J. Li, and F. Wang, "Graphene-wrapped polyaniline nanofibers as electrode materials for organic supercapacitors," Carbon, vol. 52, pp. 440-450, 2013.
    連結:
  23. [23] Q. Chen, X. Li, X. Zang, Y. Cao, Y. He, P. Li, et al., "Effect of different gel electrolytes on graphene-based solid-state supercapacitors," RSC Advances, vol. 4, p. 36253, 2014.
    連結:
  24. [24] F.-H. Kuok, C.-Y. Liao, T.-H. Wan, P.-W. Yeh, I. C. Cheng, and J.-Z. Chen, "Atmospheric pressure plasma jet processed reduced graphene oxides for supercapacitor application," Journal of Alloys and Compounds, vol. 692, pp. 558-562, 2017.
    連結:
  25. [25] R. M. Wightman, L. J. May, and A. C. Michael, "Detection of dopamine dynamics in the brain," Analytical Chemistry, vol. 60, pp. 769A-793A, 1988.
    連結:
  26. [26] J. Knight, "Dopamine-receptor-stimulating autoantibodies: a possible cause of schizophrenia," The Lancet, vol. 320, pp. 1073-1076, 1982.
    連結:
  27. [27] E. Hirsch, A. M. Graybiel, and Y. A. Agid, "Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson's disease," Nature, vol. 334, pp. 345-348, 1988.
    連結:
  28. [28] Y. Tao, Y. Lin, J. Ren, and X. Qu, "A dual fluorometric and colorimetric sensor for dopamine based on BSA-stabilized Au nanoclusters," Biosens Bioelectron, vol. 42, pp. 41-6, Apr 15 2013.
    連結:
  29. [29] B. R. Li, Y. J. Hsieh, Y. X. Chen, Y. T. Chung, C. Y. Pan, and Y. T. Chen, "An ultrasensitive nanowire-transistor biosensor for detecting dopamine release from living PC12 cells under hypoxic stimulation," J Am Chem Soc, vol. 135, pp. 16034-7, Oct 30 2013.
    連結:
  30. [30] J. Z. Chen, A. A. Darhuber, S. M. Troian, and S. Wagner, "Capacitive sensing of droplets for microfluidic devices based on thermocapillary actuation," Lab Chip, vol. 4, pp. 473-80, Oct 2004.
    連結:
  31. [31] A. Ambrosi and M. Pumera, "3D-printing technologies for electrochemical applications," Chemical Society Reviews, vol. 45, pp. 2740-2755, 2016.
    連結:
  32. [32] J. L. Erkal, A. Selimovic, B. C. Gross, S. Y. Lockwood, E. L. Walton, S. McNamara, et al., "3D printed microfluidic devices with integrated versatile and reusable electrodes," Lab on a Chip, vol. 14, pp. 2023-2032, 2014.
    連結:
  33. [33] M.-C. Liu, J.-G. Wu, M.-F. Tsai, W.-S. Yu, P.-C. Lin, I. C. Chiu, et al., "Two dimensional thermoelectric platforms for thermocapillary droplet actuation," RSC Adv., vol. 2, pp. 1639-1642, 2012.
    連結:
  34. [34] M. K. Gelber and R. Bhargava, "Monolithic multilayer microfluidics via sacrificial molding of 3D-printed isomalt," Lab on a Chip, vol. 15, pp. 1736-1741, 2015.
    連結:
  35. [35] M. D. Symes, P. J. Kitson, J. Yan, C. J. Richmond, G. J. Cooper, R. W. Bowman, et al., "Integrated 3D-printed reactionware for chemical synthesis and analysis," Nat Chem, vol. 4, pp. 349-54, Apr 15 2012.
    連結:
  36. [36] L. Wang, S. Ma, B. Yang, W. Cao, and X. Han, "Morphology-controlled synthesis of Ag nanoparticle decorated poly(o-phenylenediamine) using microfluidics and its application for hydrogen peroxide detection," Chemical Engineering Journal, vol. 268, pp. 102-108, 2015.
    連結:
  37. [37] T. A. Balbino, N. T. Aoki, A. A. M. Gasperini, C. L. P. Oliveira, A. R. Azzoni, L. P. Cavalcanti, et al., "Continuous flow production of cationic liposomes at high lipid concentration in microfluidic devices for gene delivery applications," Chemical Engineering Journal, vol. 226, pp. 423-433, 2013.
    連結:
  38. [38] C. M. B. Ho, S. H. Ng, K. H. H. Li, and Y.-J. Yoon, "3D printed microfluidics for biological applications," Lab on a Chip, vol. 15, pp. 3627-3637, 2015.
    連結:
  39. [39] P. J. Kitson, M. H. Rosnes, V. Sans, V. Dragone, and L. Cronin, "Configurable 3D-Printed millifluidic and microfluidic ‘lab on a chip’reactionware devices," Lab on a Chip, vol. 12, pp. 3267-3271, 2012.
    連結:
  40. [40] L. C. Duarte, T. C. de Carvalho, E. O. Lobo-Júnior, P. V. Abdelnur, B. G. Vaz, and W. K. Coltro, "3D printing of microfluidic devices for paper-assisted direct spray ionization mass spectrometry," Analytical Methods, vol. 8, pp. 496-503, 2016.
    連結:
  41. [41] G. Chisholm, P. J. Kitson, N. D. Kirkaldy, L. G. Bloor, and L. Cronin, "3D printed flow plates for the electrolysis of water: an economic and adaptable approach to device manufacture," Energy & Environmental Science, vol. 7, pp. 3026-3032, 2014.
    連結:
  42. [42] G. Matzeu, C. O'Quigley, E. McNamara, C. Zuliani, C. Fay, T. Glennon, et al., "An integrated sensing and wireless communications platform for sensing sodium in sweat," Analytical Methods, vol. 8, pp. 64-71, 2016.
    連結:
  43. [43] A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, and R. F. Hicks, "The atmospheric-pressure plasma jet: a review and comparison to other plasma sources," IEEE transactions on plasma science, vol. 26, pp. 1685-1694, 1998.
    連結:
  44. [44] T. C. Montie, K. Kelly-Wintenberg, and J. R. Roth, "An overview of research using the one atmosphere uniform glow discharge plasma (OAUGDP) for sterilization of surfaces and materials," IEEE Transactions on plasma science, vol. 28, pp. 41-50, 2000.
    連結:
  45. [45] D. Mariotti, T. Belmonte, J. Benedikt, T. Velusamy, G. Jain, and V. Švrček, "Low-Temperature Atmospheric Pressure Plasma Processes for “Green” Third Generation Photovoltaics," Plasma Processes and Polymers, vol. 13, pp. 70-90, 2016.
    連結:
  46. [46] G. Y. Park, S. J. Park, M. Y. Choi, I. G. Koo, J. H. Byun, J. W. Hong, et al., "Atmospheric-pressure plasma sources for biomedical applications," Plasma Sources Science and Technology, vol. 21, p. 043001, 2012.
    連結:
  47. [47] J. R. Roth, S. Nourgostar, and T. A. Bonds, "The One Atmosphere Uniform Glow Discharge Plasma (OAUGDP)—A Platform Technology for the 21st Century," IEEE Transactions on Plasma Science, vol. 35, pp. 233-250, 2007.
    連結:
  48. [48] K. N. Kim, S. M. Lee, A. Mishra, and G. Y. Yeom, "Atmospheric pressure plasmas for surface modification of flexible and printed electronic devices: A review," Thin Solid Films, vol. 598, pp. 315-334, 2016.
    連結:
  49. [49] B. Surowsky, O. Schlüter, and D. Knorr, "Interactions of non-thermal atmospheric pressure plasma with solid and liquid food systems: a review," Food Engineering Reviews, vol. 7, pp. 82-108, 2015.
    連結:
  50. [50] O. V. Penkov, M. Khadem, W.-S. Lim, and D.-E. Kim, "A review of recent applications of atmospheric pressure plasma jets for materials processing," Journal of Coatings Technology and Research, vol. 12, pp. 225-235, 2015.
    連結:
  51. [51] M. Laroussi and T. Akan, "Arc-Free Atmospheric Pressure Cold Plasma Jets: A Review," Plasma Processes and Polymers, vol. 4, pp. 777-788, 2007.
    連結:
  52. [52] C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, "Atmospheric pressure plasmas: A review," Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 61, pp. 2-30, 2006.
    連結:
  53. [54] J. Patel, L. Nemcova, P. Maguire, W. G. Graham, and D. Mariotti, "Synthesis of surfactant-free electrostatically stabilized gold nanoparticles by plasma-induced liquid chemistry," Nanotechnology, vol. 24, p. 245604, Jun 21 2013.
    連結:
  54. [55] T.-J. Wu, C.-Y. Chou, C.-M. Hsu, C.-C. Hsu, J.-Z. Chen, and I. C. Cheng, "Ultrafast synthesis of continuous Au thin films from chloroauric acid solution using an atmospheric pressure plasma jet," RSC Adv., vol. 5, pp. 99654-99657, 2015.
    連結:
  55. [56] X. Zheng, G. Chen, Z. Zhang, J. Beem, S. Massey, and J. Huang, "A two-step process for surface modification of poly(ethylene terephthalate) fabrics by Ar/O2 plasma-induced facile polymerization at ambient conditions," Surface and Coatings Technology, vol. 226, pp. 123-129, 2013.
    連結:
  56. [57] R. Foest, E. Kindel, A. Ohl, M. Stieber, and K. Weltmann, "Non-thermal atmospheric pressure discharges for surface modification," Plasma Physics and Controlled Fusion, vol. 47, p. B525, 2005.
    連結:
  57. [58] C. A. J. van Gils, S. Hofmann, B. K. H. L. Boekema, R. Brandenburg, and P. J. Bruggeman, "Mechanisms of bacterial inactivation in the liquid phase induced by a remote RF cold atmospheric pressure plasma jet," Journal of Physics D: Applied Physics, vol. 46, p. 175203, 2013.
    連結:
  58. [59] K. Kelly-Wintenberg, D. M. Sherman, P.-Y. Tsai, R. B. Gadri, F. Karakaya, Z. Chen, et al., "Air filter sterilization using a one atmosphere uniform glow discharge plasma (the volfilter)," IEEE Transactions on plasma science, vol. 28, pp. 64-71, 2000.
    連結:
  59. [60] N. J. Kramer, E. S. Aydil, and U. R. Kortshagen, "Requirements for plasma synthesis of nanocrystals at atmospheric pressures," Journal of Physics D: Applied Physics, vol. 48, p. 035205, 2015.
    連結:
  60. [61] B. Barwe, F. Riedel, O. E. Cibulka, I. Pelant, and J. Benedikt, "Silicon nanoparticle formation depending on the discharge conditions of an atmospheric radio-frequency driven microplasma with argon/silane/hydrogen gases," Journal of Physics D: Applied Physics, vol. 48, p. 314001, 2015.
    連結:
  61. [62] S. Askari, M. Macias-Montero, T. Velusamy, P. Maguire, V. Svrcek, and D. Mariotti, "Silicon-based quantum dots: synthesis, surface and composition tuning with atmospheric pressure plasmas," Journal of Physics D: Applied Physics, vol. 48, p. 314002, 2015.
    連結:
  62. [63] A. C. Bose, Y. Shimizu, D. Mariotti, T. Sasaki, K. Terashima, and N. Koshizaki, "Flow rate effect on the structure and morphology of molybdenum oxide nanoparticles deposited by atmospheric-pressure microplasma processing," Nanotechnology, vol. 17, p. 5976, 2006.
    連結:
  63. [64] Y.-w. Hsu, H.-C. Li, Y.-J. Yang, and C.-c. Hsu, "Deposition of zinc oxide thin films by an atmospheric pressure plasma jet," Thin Solid Films, vol. 519, pp. 3095-3099, 2011.
    連結:
  64. [65] S. Babayan, J. Jeong, A. Schütze, V. Tu, M. Moravej, G. Selwyn, et al., "Deposition of silicon dioxide films with a non-equilibrium atmospheric-pressure plasma jet," Plasma Sources Science and Technology, vol. 10, p. 573, 2001.
    連結:
  65. [66] H. Chang, Y.-J. Yang, H.-C. Li, C.-C. Hsu, I. C. Cheng, and J.-Z. Chen, "Preparation of nanoporous TiO2 films for DSSC application by a rapid atmospheric pressure plasma jet sintering process," Journal of Power Sources, vol. 234, pp. 16-22, 2013.
    連結:
  66. [67] H. Chang, C.-M. Hsu, P.-K. Kao, Y.-J. Yang, C.-C. Hsu, I. C. Cheng, et al., "Dye-sensitized solar cells with nanoporous TiO2 photoanodes sintered by N2 and air atmospheric pressure plasma jets with/without air-quenching," Journal of Power Sources, vol. 251, pp. 215-221, 2014.
    連結:
  67. [68] C. Wang and J.-Z. Chen, "Atmospheric-pressure-plasma-jet sintered nanoporous SnO2," Ceramics International, vol. 41, pp. 5478-5483, 2015.
    連結:
  68. [69] S.-H. Chang, J.-S. Liou, J.-L. Liu, Y.-F. Chiu, C.-H. Xu, B.-Y. Chen, et al., "Feasibility study of surface-modified carbon cloth electrodes using atmospheric pressure plasma jets for microbial fuel cells," Journal of Power Sources, vol. 336, pp. 99-106, 2016.
    連結:
  69. [70] L. Liu, D. Ye, Y. Yu, L. Liu, and Y. Wu, "Carbon-based flexible micro-supercapacitor fabrication via mask-free ambient micro-plasma-jet etching," Carbon, vol. 111, pp. 121-127, 2017.
    連結:
  70. [71] J.-Z. Chen, C. Wang, C.-C. Hsu, and I. C. Cheng, "Ultrafast synthesis of carbon-nanotube counter electrodes for dye-sensitized solar cells using an atmospheric-pressure plasma jet," Carbon, vol. 98, pp. 34-40, 2016.
    連結:
  71. [72] H. W. Liu, S. P. Liang, T. J. Wu, H. Chang, P. K. Kao, C. C. Hsu, et al., "Rapid atmospheric pressure plasma jet processed reduced graphene oxide counter electrodes for dye-sensitized solar cells," ACS Appl Mater Interfaces, vol. 6, pp. 15105-12, Sep 10 2014.
    連結:
  72. [73] T.-H. Wan, Y.-F. Chiu, C.-W. Chen, C.-C. Hsu, I. C. Cheng, and J.-Z. Chen, "Atmospheric-Pressure Plasma Jet Processed Pt-Decorated Reduced Graphene Oxides for Counter-Electrodes of Dye-Sensitized Solar Cells," Coatings, vol. 6, p. 44, 2016.
    連結:
  73. [74] J. Jeong, S. Babayan, V. Tu, J. Park, I. Henins, R. Hicks, et al., "Etching materials with an atmospheric-pressure plasma jet," Plasma Sources Science and Technology, vol. 7, p. 282, 1998.
    連結:
  74. [77] I. Langmuir, "Oscillations in ionized gases," Proceedings of the National Academy of Sciences, vol. 14, pp. 627-637, 1928.
    連結:
  75. [78] U. Kogelschatz, "Dielectric-barrier discharges: their history, discharge physics, and industrial applications," Plasma chemistry and plasma processing, vol. 23, pp. 1-46, 2003.
    連結:
  76. [79] M. C. Siemens, "On the electrical tests employed during the construction of the Malta and Alexandria telegraph, and on insulating and protecting submarine cables," ed: Pergamon, 1862.
    連結:
  77. [80] B. Eliasson, W. Egli, and U. Kogelschatz, "Modelling of dielectric barrier discharge chemistry," Pure and applied chemistry, vol. 66, pp. 1275-1286, 1994.
    連結:
  78. [81] G. Fridman, M. Peddinghaus, M. Balasubramanian, H. Ayan, A. Fridman, A. Gutsol, et al., "Blood Coagulation and Living Tissue Sterilization by Floating-Electrode Dielectric Barrier Discharge in Air," Plasma Chemistry and Plasma Processing, vol. 26, pp. 425-442, 2006.
    連結:
  79. [83] G. Fridman, M. Peddinghaus, A. Fridman, M. Balasubramanian, A. Gutsol, and G. Friedman, "Use of non-thermal atmospheric pressure plasma discharge for coagulation and sterilization of surface wounds," in 17th international Symposium on plasma chemistry. Toronto, 2005, pp. 1-2.
    連結:
  80. [84] J. H. Choi, I. Han, H. K. Baik, M. H. Lee, D.-W. Han, J.-C. Park, et al., "Analysis of sterilization effect by pulsed dielectric barrier discharge," Journal of Electrostatics, vol. 64, pp. 17-22, 2006.
    連結:
  81. [85] W. Samaranayake, Y. Miyahara, T. Namihira, S. Katsuki, R. Hackam, and H. Akiyama, "Ozone production using pulsed dielectric barrier discharge in oxygen," IEEE Transactions on Dielectrics and Electrical Insulation, vol. 7, pp. 849-854, 2000.
    連結:
  82. [86] B. Eliasson, M. Hirth, and U. Kogelschatz, "Ozone synthesis from oxygen in dielectric barrier discharges," Journal of Physics D: Applied Physics, vol. 20, p. 1421, 1987.
    連結:
  83. [87] S.-L. Park, J.-D. Moon, S.-H. Lee, and S.-Y. Shin, "Effective ozone generation utilizing a meshed-plate electrode in a dielectric-barrier discharge type ozone generator," Journal of Electrostatics, vol. 64, pp. 275-282, 2006.
    連結:
  84. [88] U. Reitz, J. Salge, and R. Schwarz, "Pulsed barrier discharges for thin film production at atmospheric pressure," Surface and Coatings Technology, vol. 59, pp. 144-147, 1993.
    連結:
  85. [89] J.-S. Chang, P. A. Lawless, and T. Yamamoto, "Corona discharge processes," IEEE Transactions on plasma science, vol. 19, pp. 1152-1166, 1991.
    連結:
  86. [90] M. Goldman, A. Goldman, and R. Sigmond, "The corona discharge, its properties and specific uses," Pure and Applied Chemistry, vol. 57, pp. 1353-1362, 1985.
    連結:
  87. [91] T. B. Reed, "Induction‐Coupled Plasma Torch," Journal of Applied Physics, vol. 32, pp. 821-824, 1961.
    連結:
  88. [93] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, et al., "Electric field effect in atomically thin carbon films," science, vol. 306, pp. 666-669, 2004.
    連結:
  89. [94] C. Srinivasan, "Graphene-: Mother of all graphitic materials," Current science, vol. 92, pp. 1338-1339, 2007.
    連結:
  90. [95] R. H. Baughman, A. A. Zakhidov, and W. A. De Heer, "Carbon nanotubes--the route toward applications," science, vol. 297, pp. 787-792, 2002.
    連結:
  91. [96] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, et al., "Superior thermal conductivity of single-layer graphene," Nano letters, vol. 8, pp. 902-907, 2008.
    連結:
  92. [97] R. P. Ojha, P. A. Lemieux, P. K. Dixon, A. J. Liu, and D. J. Durian, "Statistical mechanics of a gas-fluidized particle," Nature, vol. 427, pp. 521-3, Feb 05 2004.
    連結:
  93. [98] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, et al., "Ultrahigh electron mobility in suspended graphene," Solid State Communications, vol. 146, pp. 351-355, 2008.
    連結:
  94. [100] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, et al., "Raman spectrum of graphene and graphene layers," Phys Rev Lett, vol. 97, p. 187401, Nov 03 2006.
    連結:
  95. [101] C. Hontoria-Lucas, A. Lopez-Peinado, J. d. D. López-González, M. Rojas-Cervantes, and R. Martin-Aranda, "Study of oxygen-containing groups in a series of graphite oxides: physical and chemical characterization," Carbon, vol. 33, pp. 1585-1592, 1995.
    連結:
  96. [103] K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, "Graphene oxide as a chemically tunable platform for optical applications," Nat Chem, vol. 2, pp. 1015-24, Dec 2010.
    連結:
  97. [104] J. Ito, J. Nakamura, and A. Natori, "Semiconducting nature of the oxygen-adsorbed graphene sheet," Journal of Applied Physics, vol. 103, p. 113712, 2008.
    連結:
  98. [105] L. Staudenmaier, "Verfahren zur darstellung der graphitsäure," European Journal of Inorganic Chemistry, vol. 31, pp. 1481-1487, 1898.
    連結:
  99. [106] B. Brodie, "Sur le poids atomique du graphite," Ann. Chim. Phys, vol. 59, p. e472, 1860.
    連結:
  100. [109] M. Zhou, Y. Wang, Y. Zhai, J. Zhai, W. Ren, F. Wang, et al., "Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films," Chemistry, vol. 15, pp. 6116-20, Jun 15 2009.
    連結:
  101. [110] P. Steurer, R. Wissert, R. Thomann, and R. Mulhaupt, "Functionalized Graphenes and Thermoplastic Nanocomposites Based upon Expanded Graphite Oxide," Macromol Rapid Commun, vol. 30, pp. 316-27, Feb 18 2009.
    連結:
  102. [111] X. Fan, W. Peng, Y. Li, X. Li, S. Wang, G. Zhang, et al., "Deoxygenation of Exfoliated Graphite Oxide under Alkaline Conditions: A Green Route to Graphene Preparation," Advanced Materials, vol. 20, pp. 4490-4493, 2008.
    連結:
  103. [112] Y. Zhou, Q. Bao, L. A. L. Tang, Y. Zhong, and K. P. Loh, "Hydrothermal Dehydration for the “Green” Reduction of Exfoliated Graphene Oxide to Graphene and Demonstration of Tunable Optical Limiting Properties," Chemistry of Materials, vol. 21, pp. 2950-2956, 2009.
    連結:
  104. [113] M. J. Fernández-Merino, L. Guardia, J. I. Paredes, S. Villar-Rodil, P. Solís-Fernández, A. Martínez-Alonso, et al., "Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions," The Journal of Physical Chemistry C, vol. 114, pp. 6426-6432, 2010.
    連結:
  105. [114] C.-Y. Su, Y. Xu, W. Zhang, J. Zhao, A. Liu, X. Tang, et al., "Highly efficient restoration of graphitic structure in graphene oxide using alcohol vapors," Acs Nano, vol. 4, pp. 5285-5292, 2010.
    連結:
  106. [115] C. Zhu, S. Guo, Y. Fang, and S. Dong, "Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets," ACS nano, vol. 4, pp. 2429-2437, 2010.
    連結:
  107. [116] Y. Lin, C. Chen, C. Wang, F. Pu, J. Ren, and X. Qu, "Silver nanoprobe for sensitive and selective colorimetric detection of dopamine via robust Ag-catechol interaction," Chem Commun (Camb), vol. 47, pp. 1181-3, Jan 28 2011.
    連結:
  108. [117] X. Ji, G. Palui, T. Avellini, H. B. Na, C. Yi, K. L. Knappenberger, Jr., et al., "On the pH-dependent quenching of quantum dot photoluminescence by redox active dopamine," J Am Chem Soc, vol. 134, pp. 6006-17, Apr 04 2012.
    連結:
  109. [118] L. Stoica, A. Lindgren-Sjölander, T. Ruzgas, and L. Gorton, "Biosensor based on cellobiose dehydrogenase for detection of catecholamines," Analytical chemistry, vol. 76, pp. 4690-4696, 2004.
    連結:
  110. [119] H. Erdogan, S. Tuncagil, and L. Toppare, "L-Dopa Synthesis on Conducting Polymers," Journal of Macromolecular Science, Part A, vol. 47, pp. 209-214, 2010.
    連結:
  111. [120] D. L. Robinson, A. Hermans, A. T. Seipel, and R. M. Wightman, "Monitoring rapid chemical communication in the brain," Chemical reviews, vol. 108, pp. 2554-2584, 2008.
    連結:
  112. [121] B. J. Venton and R. M. Wightman, "Psychoanalytical electrochemistry: dopamine and behavior," ed: ACS Publications, 2003.
    連結:
  113. [122] W. Schultz, "Neuronal Reward and Decision Signals: From Theories to Data," Physiol Rev, vol. 95, pp. 853-951, Jul 2015.
    連結:
  114. [123] K. C. Berridge and M. L. Kringelbach, "Pleasure systems in the brain," Neuron, vol. 86, pp. 646-64, May 06 2015.
    連結:
  115. [125] A. J. Hughes, S. E. Daniel, L. Kilford, and A. J. Lees, "Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases," Journal of Neurology, Neurosurgery & Psychiatry, vol. 55, pp. 181-184, 1992.
    連結:
  116. [126] J. Rabey and F. Hefti, "Neuromelanin synthesis in rat and human substantia nigra," Journal of Neural Transmission-Parkinson's Disease and Dementia Section, vol. 2, pp. 1-14, 1990.
    連結:
  117. [127] J. Moncrieff, The myth of the chemical cure: A critique of psychiatric drug treatment: Macmillan, 2008.
    連結:
  118. [128] H. Lee, S. M. Dellatore, W. M. Miller, and P. B. Messersmith, "Mussel-inspired surface chemistry for multifunctional coatings," science, vol. 318, pp. 426-430, 2007.
    連結:
  119. [129] J. E. Carter, J. H. Johnson, and D. M. Baaske, "Dopamine Hydrochloride," Analytical Profiles of Drug Substances, vol. 11, pp. 257-272, 1982.
    連結:
  120. [130] L. L. Zhang and X. S. Zhao, "Carbon-based materials as supercapacitor electrodes," Chem Soc Rev, vol. 38, pp. 2520-31, Sep 2009.
    連結:
  121. [131] H. v. Helmholtz, "Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch‐elektrischen Versuche," Annalen der Physik, vol. 165, pp. 211-233, 1853.
    連結:
  122. [132] E. Frackowiak, "Carbon materials for supercapacitor application," Phys Chem Chem Phys, vol. 9, pp. 1774-85, Apr 21 2007.
    連結:
  123. [133] S. D. Perera, M. Rudolph, R. G. Mariano, N. Nijem, J. P. Ferraris, Y. J. Chabal, et al., "Manganese oxide nanorod–graphene/vanadium oxide nanowire–graphene binder-free paper electrodes for metal oxide hybrid supercapacitors," Nano Energy, vol. 2, pp. 966-975, 2013.
    連結:
  124. [134] M. Zhi, C. Xiang, J. Li, M. Li, and N. Wu, "Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review," Nanoscale, vol. 5, pp. 72-88, Jan 07 2013.
    連結:
  125. [136] J. J. Lavigne and E. V. Anslyn, "Sensing a paradigm shift in the field of molecular recognition: From selective to differential receptors," Angewandte Chemie International Edition, vol. 40, pp. 3118-3130, 2001.
    連結:
  126. [137] F.-G. Banica, Chemical sensors and biosensors: fundamentals and applications: John Wiley & Sons, 2012.
    連結:
  127. [139] P. D'Orazio, "Biosensors in clinical chemistry," Clinica Chimica Acta, vol. 334, pp. 41-69, 2003.
    連結:
  128. [140] D. R. Thévenot, K. Toth, R. A. Durst, and G. S. Wilson, "Electrochemical biosensors: recommended definitions and classification," Biosensors and Bioelectronics, vol. 16, pp. 121-131, 2001.
    連結:
  129. [142] M. Mehrvar and A. Mustafe, "Recent developments, characteristics, and potential applications of electrochemical biosensors," Analytical sciences, vol. 20, pp. 1113-1126, 2004.
    連結:
  130. [144] L. C. Craig, J. D. Gregory, and W. Hausmann, "Versatile laboratory concentration device," Analytical Chemistry, vol. 22, pp. 1462-1462, 1950.
    連結:
  131. [146] J. A. Owczarek and F. L. Howland, "A study of the off-contact screen printing process. I. Model of the printing process and some results derived from experiments," IEEE Transactions on components, hybrids, and manufacturing technology, vol. 13, pp. 358-367, 1990.
    連結:
  132. [147] 李欣潔, "利用常壓噴射式電漿製備氧化鋅透明導電薄膜及其性質之研究," 臺灣大學化學工程學研究所學位論文, pp. 1-146, 2012.
    連結:
  133. [148] C.-H. Yang, F.-H. Kuok, C.-Y. Liao, T.-H. Wan, C.-W. Chen, C.-C. Hsu, et al., "Flexible reduced graphene oxide supercapacitor fabricated using a nitrogen dc-pulse atmospheric-pressure plasma jet," Materials Research Express, vol. 4, p. 025504, 2017.
    連結:
  134. [149] 蔡宜軒, "下閘極氧化鋅鎂薄膜電晶體之電穩定性研究," 臺灣大學應用力學研究所學位論文, pp. 1-75, 2011.
    連結:
  135. [151] "'Electron Beam Source for Electron Beam Deposition', [online]. Available: http://www.jeol.co.jp/en/science/eb.html. [Accessed 11 May. 2017].".
    連結:
  136. [152] P. K. Wright, 21st century manufacturing: Prentice Hall, 2001.
    連結:
  137. [153] T.-T. Tsung, C.-H. Lo, C.-S. Jwo, H. Chang, and K.-C. Wang, "A novel nanofluid manufacturing process using a cylindrical flow cooling method in an induction heating system," The International Journal of Advanced Manufacturing Technology, vol. 29, pp. 99-104, 2005.
    連結:
  138. [154] H.-S. Kim, J.-C. Woo, Y.-H. Joo, and C.-I. Kim, "The Use of Inductively Coupled CF4/Ar Plasma to Improve the Etch Rate of ZrO2Thin Films," Transactions on Electrical and Electronic Materials, vol. 14, pp. 12-15, 2013.
    連結:
  139. [155] D. Stokes, Principles and practice of variable pressure: environmental scanning electron microscopy (VP-ESEM): John Wiley & Sons, 2008.
    連結:
  140. [157] D. McMullan, "An improved scanning electron microscope for opaque specimens," Proceedings of the IEE-Part II: Power Engineering, vol. 100, pp. 245-256, 1953.
    連結:
  141. [158] K. Smith and C. Oatley, "The scanning electron microscope and its fields of application," British Journal of Applied Physics, vol. 6, p. 391, 1955.
    連結:
  142. [159] O. C. Wells, The Construction of a Scanning Electron Microscope and Its Application to the Study of Fibers, 1957.
    連結:
  143. [162] J. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, A. D. Romig Jr, C. E. Lyman, et al., Scanning electron microscopy and X-ray microanalysis: a text for biologists, materials scientists, and geologists: Springer Science & Business Media, 2012.
    連結:
  144. [165] D. A. Skoog, F. J. Holler, and S. R. Crouch, Principles of instrumental analysis: Thomson Brooks/Cole, 2007.
    連結:
  145. [169] A. Yu, V. Chabot, and J. Zhang, Electrochemical supercapacitors for energy storage and delivery: fundamentals and applications: CRC Press, 2013.
    連結:
  146. [171] L. Nadjo and J. Savéant, "Linear sweep voltammetry: Kinetic control by charge transfer and/or secondary chemical reactions: I. Formal kinetics," Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 48, pp. 113-145, 1973.
    連結:
  147. [173] X. He, Y. Geng, J. Qiu, M. Zheng, S. Long, and X. Zhang, "Effect of activation time on the properties of activated carbons prepared by microwave-assisted activation for electric double layer capacitors," Carbon, vol. 48, pp. 1662-1669, 2010.
    連結:
  148. [174] C. Guan, X. Li, Z. Wang, X. Cao, C. Soci, H. Zhang, et al., "Nanoporous walls on macroporous foam: rational design of electrodes to push areal pseudocapacitance," Adv Mater, vol. 24, pp. 4186-90, Aug 08 2012.
    連結:
  149. [175] D. Zhang, X. Zhang, Y. Chen, C. Wang, and Y. Ma, "An environment-friendly route to synthesize reduced graphene oxide as a supercapacitor electrode material," Electrochimica Acta, vol. 69, pp. 364-370, 2012.
    連結:
  150. [176] Z. Fan, J. Yan, L. Zhi, Q. Zhang, T. Wei, J. Feng, et al., "A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors," Adv Mater, vol. 22, pp. 3723-8, Sep 01 2010.
    連結:
  151. [177] Y. Yoon, K. Lee, C. Baik, H. Yoo, M. Min, Y. Park, et al., "Anti-solvent derived non-stacked reduced graphene oxide for high performance supercapacitors," Adv Mater, vol. 25, pp. 4437-44, Aug 27 2013.
    連結:
  152. [178] J. Yan, J. Liu, Z. Fan, T. Wei, and L. Zhang, "High-performance supercapacitor electrodes based on highly corrugated graphene sheets," Carbon, vol. 50, pp. 2179-2188, 2012.
    連結:
  153. [179] X.-C. Dong, H. Xu, X.-W. Wang, Y.-X. Huang, M. B. Chan-Park, H. Zhang, et al., "3D graphene–cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection," ACS nano, vol. 6, pp. 3206-3213, 2012.
    連結:
  154. [180] X. Lu, D. Zheng, T. Zhai, Z. Liu, Y. Huang, S. Xie, et al., "Facile synthesis of large-area manganese oxide nanorod arrays as a high-performance electrochemical supercapacitor," Energy & Environmental Science, vol. 4, p. 2915, 2011.
    連結:
  155. [181] J. Yu, J. Wu, H. Wang, A. Zhou, C. Huang, H. Bai, et al., "Metallic Fabrics as the Current Collector for High-Performance Graphene-Based Flexible Solid-State Supercapacitor," ACS Appl Mater Interfaces, vol. 8, pp. 4724-9, Feb 2016.
    連結:
  156. [182] S. Palanisamy, S. Ku, and S.-M. Chen, "Dopamine sensor based on a glassy carbon electrode modified with a reduced graphene oxide and palladium nanoparticles composite," Microchimica Acta, vol. 180, pp. 1037-1042, 2013.
    連結:
  157. [183] J. G. Roberts, B. P. Moody, G. S. McCarty, and L. A. Sombers, "Specific oxygen-containing functional groups on the carbon surface underlie an enhanced sensitivity to dopamine at electrochemically pretreated carbon fiber microelectrodes," Langmuir, vol. 26, pp. 9116-22, Jun 01 2010.
    連結:
  158. [184] Z. Gao, X. Liu, J. Chang, D. Wu, F. Xu, L. Zhang, et al., "Graphene incorporated, N doped activated carbon as catalytic electrode in redox active electrolyte mediated supercapacitor," Journal of Power Sources, vol. 337, pp. 25-35, 2017.
    連結:
  159. [185] D. Yuan, X. Yuan, S. Zhou, W. Zou, and T. Zhou, "N-Doped carbon nanorods as ultrasensitive electrochemical sensors for the determination of dopamine," RSC Advances, vol. 2, p. 8157, 2012.
    連結:
  160. [53] N. Misra, O. Schlüter, and P. Cullen, Cold Plasma in Food and Agriculture: Fundamentals and Applications: Academic Press, 2016.
  161. [75] J. Y. Jeong, S. E. Babayan, A. Schütze, V. J. Tu, J. Park, I. Henins, et al., "Etching polyimide with a nonequilibrium atmospheric-pressure plasma jet," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 17, pp. 2581-2585, 1999.
  162. [76] 洪昭南 and 郭有斌, "電漿反應器與原理," ed: 化工技術, 2001.
  163. [82] G. Fridman, A. Fridman, M. Peddinghaus, M. Balasubramanian, A. Gutsol, and G. Friedman, "From Plasma Biology to Plasma Medicine: Sterilization," in Tissue Engineering, Treatment of Surface Wounds and Skin Diseases. in The 58th Annual Gaseous Electronics Conference (GEC). San Jose, California, USA, 2005.
  164. [92] 洪昭南, "電漿反應器," ed: 化工技術, 1995.
  165. [99] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, et al., "Two-dimensional gas of massless Dirac fermions in graphene," Nature, vol. 438, pp. 197-200, Nov 10 2005.
  166. [102] H. He, J. Klinowski, M. Forster, and A. Lerf, "A new structural model for graphite oxide," Chemical physics letters, vol. 287, pp. 53-56, 1998.
  167. [107] W. S. Hummers Jr and R. E. Offeman, "Preparation of graphitic oxide," Journal of the American Chemical Society, vol. 80, pp. 1339-1339, 1958.
  168. [108] R. S. Sundaram, C. Gómez-Navarro, K. Balasubramanian, M. Burghard, and K. Kern, "Electrochemical Modification of Graphene," Advanced Materials, vol. 20, pp. 3050-3053, 2008.
  169. [124] L. Conlay, L. Sabounjian, and R. Wurtman, "Exercise and Neuromodulators," International journal of sports medicine, vol. 13, pp. S141-S142, 1992.
  170. [135] S. Bennett, A history of control engineering, 1930-1955: IET, 1993.
  171. [138] G. McMahon, "Chemical Sensors and Biosensors," Modern Sensors Handbook, pp. 245-303.
  172. [141] D. Wahl, "A Short History of Electrochemistry- Part I," Galvanotechnik, vol. 96, pp. 1600-1610, 2005.
  173. [143] F. Cottrell, "Residual current in galvanic polarization, regarded as a diffusion problem," Z Phys Chem, vol. 42, pp. 385-431, 1903.
  174. [145] 'Rotary evaporator', [Online]. Available: https://upload.wikimedia.org/wikipedia/commons/d/d2/Rotary_Evaporator.svg. [Accessed 11 May. 2017].
  175. [150] 張勁燕, 半導體製程設備: 五南圖書出版股份有限公司, 2005.
  176. [156] M. Knoll, "Aufladepotentiel und sekundäremission elektronenbestrahlter körper," Z. tech. Phys, vol. 16, pp. 467-475, 1935.
  177. [160] "'scanning electron microscope (sem)', [online]. Available: http://cellularphysiology.wikispaces.com/scanning+electron+microscope+(sem). [Accessed 11 May. 2017].".
  178. [161] J. D. Andrade, "X-ray photoelectron spectroscopy (XPS)," in Surface and interfacial aspects of biomedical polymers, ed: Springer, 1985, pp. 105-195.
  179. [163] "'Electron probe micro-analyzer (EPMA)', [online]. Available: http://serc.carleton.edu/research_education/geochemsheets/techniques/EPMA.html. [Accessed 11 May. 2017].".
  180. [164] "'USB Optical Bench - Ocean Optics', [Online]. Available: https://oceanoptics.com/product-details/usb4000-optical-bench-options/usb_optical-bench/. [Accessed: 11 May. 2017].".
  181. [166] A. Mehta, "Ultraviolet-Visible (UV-Vis) Spectroscopy-Derivation of Beer-Lambert Law," Analytical Chemistry. Available at pharmaxchange. info, 2012.
  182. [167] P. Scherrer, "Estimation of the size and internal structure of colloidal particles by means of Röntgen rays," Nachr. Ges. Wiss. Gottingen, vol. 2, pp. 98-112, 1918.
  183. [168] J. Wang, Analytical electrochemistry: John Wiley & Sons, 2006.
  184. [170] '利用環電位儀 偵測氧化還原電位及電流', [Online]. Available: http://140.136.176.3/joom/data/menu/files/exp/CV. [Accessed 3 June. 2017].
  185. [172] "'Linear Sweep and Cyclic Voltametry: The Principles - Department of Chemical Engineering and Biotechnology', [Online]. Available: http://www.ceb.cam.ac.uk/research/groups/rg-eme/teaching-notes/linear-sweep-and-cyclic-voltametry-the-principles. [Accessed 11 May. 2017].".
  186. [186] A. J. Bard and L. R. Faulkner, "Fundamentals and applications," Electrochemical Methods, vol. 2, 2001.