Title

運用胰臟之核磁共振組織灌注與肌肉及肝臟之氫磁振頻譜技術來評估併有與沒有併有第二型糖尿病的冠狀動脈疾病病人

Translated Titles

Evaluation of Coronary Artery Disease Patients with and without Type II Diabetes by Using Dynamic MR Perfusion of Pancreas and Proton MR Spectroscopy of Muscle and Liver

DOI

10.6342/NTU.2007.02586

Authors

游治維

Key Words

核磁共振組織灌注 ; 氫磁振頻譜 ; 第二型糖尿病 ; 冠狀動脈疾病 ; MR perfusion ; MR spectroscopy ; type 2 diabetes ; coronary artery disease

PublicationName

臺灣大學臨床醫學研究所學位論文

Volume or Term/Year and Month of Publication

2007年

Academic Degree Category

碩士

Advisor

施庭芳

Content Language

繁體中文

Chinese Abstract

第二型糖尿病的致病機制是十分複雜的,胰島素分泌的缺陷 (secretory defect) 以及周邊胰島素阻抗 (insulin resistance) 為疾病成因的兩大特點;要發展成第二型糖尿病,兩個缺陷必須同時存在。胰島素阻抗常是第二型糖尿病的早期特徵,而分泌機能失常則是由初期胰島素抵抗,進展成為第二型糖尿病的重要因子。因此,要有效治療第二型糖尿病,除了降低胰島素抵抗、改進對胰島素的敏感度,也必須朝著增強beta 細胞的生存、以及預防其分泌機能失常來努力。 就臨床的診斷、治療和預防的目的來看,要了解胰島素分泌的功能,多半由血液中insulin的濃度來判斷,我們無法得知胰臟中正常beta 細胞的數量或是功能;另一方面,臨床上也沒有影像檢查技術或方法,能夠量測胰島的血流或是能預測其存活度(viability),除非是用組織切片或開刀取出組織等侵入性的方法。過去有人利用老鼠實驗證明胰島的血流(islet blood flow)變差確實與第二型糖尿病相關,然而要在人體專一性測量胰島的血流是不可能的,只能利用間接的方式來測量;因此,我們希望能利用非侵入性的磁振造影動態灌注技術來發展出影像診斷的方法及參數,用來預測或代表胰臟的組織與功能。 另一方面,周邊胰島素阻抗主要的場所在肝臟、肌肉和脂肪組織,因此胰島素阻抗會導致肥胖與脂肪不正常堆積。一般而言,肝臟、肌肉的阻抗性會出現在脂肪組織之前,所以在胰島素阻抗的初期,病人並未出現明顯肥胖時,體內的肝臟與肌肉可能已經先出現不正常的脂肪堆積。為了了解體內肌肉及肝臟的脂肪堆積情形,我們利用氫磁振頻譜技術來量測這些地方的脂肪濃度,希望藉此了解,第二型糖尿病人體內脂肪的分布情形是否與臨床相關、在形成糖尿病之前與之後是否不同。 所謂代謝症候群(metabolic syndrome)是指糖尿病、肥胖、高血壓、以及粥狀動脈硬化(atherosclerosis)的集合並探討之間的關連。因此,探討在冠狀動脈粥狀硬化的病人族群當中,合併有第二型糖尿病或無糖尿病者之間的差異是有必要的。我們研究的目的是利用磁振造影技術來找出確定診斷為冠狀動脈粥狀硬化的病人合併有第二型糖尿病或無糖尿病者之間,胰臟的組織灌注與肌肉及肝臟的脂肪堆積情形是否存在不同。 在胰臟的組織灌注方面,我們的研究結果顯示在控制了病人的年齡、BMI、以及心血管狹窄的嚴重度之後,同為冠狀動脈狹窄者,併有第二型糖尿病病人的胰臟動態灌注明顯比非糖尿病病人差;在磁振頻譜分析方面,我們的研究結果顯示第二型糖尿病病人有較高濃度的肌肉細胞內脂肪且與血糖控制好壞相關,長時間曝露在高血糖的狀況下會造成肌肉細胞內脂肪堆積;最後,雖然我們的研究結果並未顯示第二型糖尿病病人有較高濃度的肝臟細胞內脂肪,但是我們也證實了肝臟細胞內脂肪濃度與高血脂症及血中三酸甘油脂明顯相關,肝臟的磁振頻譜檢查應能協助臨床上脂肪肝的檢測。

English Abstract

The pathophysiology of type 2 diabetes is complex and still partially unknown. The defect of insulin secretion and the peripheral insulin resistance are both necessary in the development of type 2 diabetes. Insulin resistance appears early in the course of the disease, but the secrete defect is the key factor in the transformation from the initial stage into type 2 diabetes. Thus as potential therapeutic implications are considered, it is not only important to reduce the insulin resistance and improve the insulin sensitivity but also promote the beta-cell survival and keep it from secretory dysfunction. In clinical application of diagnosis, treatment and prevention, we measure the serum insulin concentration in order to access the function of insulin secretion. We could not measure the beta-cell mass or islet blood flow in the pancreas directly by any of the present image modality. The islet blood flow or its viability could only be accessed by tissue proof from biopsy or operation. Only animal study had been mentioned and the data in human is to be obtained. Thus, it is important to develop a method to measure the in vivo pancreatic blood flow or tissue perfusion by a non-invasive and reproducible method in human subjects. We apply MR dynamic-perfusion technique on the pancreas to access the relationship between the tissue perfusion and its function. On the other hand, as insulin resistance acts on the liver, muscle and adipose tissue, it results in abnormal fat deposition in these structures. Insulin resistance of the liver and muscle often appears earlier than the adipose tissue, thus liver and muscle may pile up abnormal fat in the initial stage before patients become overt obese. We apply MR spectroscopy technique to measure the lipid component in the liver and muscle in order to evaluate the relationship between the distribution of lipid and clinical information of type 2 diabetes. The metabolic syndrome emphasized the association between DM, obesity, hypertension and atherosclerosis. Thus we aim to investigate the difference of MR perfusion of pancreas and proton MR spectroscopy of muscle and liver between subjects, who are documented CAD, with and without type 2 diabetes. Among subjects with documented CAD, the obtained data demonstrate that 1) the MR perfusion of pancreas in subjects with type 2 diabetes is significantly decreased than in subjects without diabetes, even after adjusted with their age, BMI, and severity of CAD; 2) the intramyocellular lipid is found higher in subjects with type 2 diabetes than in subjects without diabetes and is also higher in subjects with poor blood sugar control than in subjects with better control; 3) although higher intrahepatocellular lipid is not shown in the subjects with type 2 diabetes, the well correlation between the intrahepatocellular lipid and the serum TG makes the feasibility of clinical utility of liver MRS in the detection of fatty liver.

Topic Category 醫藥衛生 > 社會醫學
醫學院 > 臨床醫學研究所
Reference
  1. 1. A. Misra, S. Sinha, M. Kumar, N. R. Jagannathan and R. M. Pandey. Proton magnetic resonance spectroscopy study of soleus muscle in non-obese healthy and Type 2 diabetic Asian Northern Indian males: high intramyocellular lipid content correlates with excess body fat and abdominal obesity. Diabet. Med 2003;20:361-7
    連結:
  2. 2. Alexandra E. Butler, Juliette Janson, Susan Bonner-Weir, Robert Ritzel, Robert A. Rizza, and Peter C. Butler. Beta-Cell Deficit and Increased beta-Cell Apoptosis in Humans With Type 2 Diabetes. Diabetes 2003;52:102–110
    連結:
  3. 4. Atef N, Portha B, Penicaud L: Changes in islet blood flow in rats with NIDDM. Diabetologia 1994;37:677–680
    連結:
  4. 5. Boden G, Lebed B, Schatz M, Homko C, Lemieux S. Effects of acute changes of plasma free fatty acids on intramyocellular fat content and insulin resistance in healthy subjects. Diabetes 2001; 50:1612– 1617.
    連結:
  5. 6. Boesch C, Slotboom J, Hoppeler H, Kreis R. In vivo determination of intra-myocellular lipids in human muscle by means of localized 1H-MR-spectroscopy. Magn Reson Med 1997; 37:484–493.
    連結:
  6. 7. Carlsson PO, Andersson A, Jansson L: Influence of age, hyperglycemia, leptin, and NPY on islet blood flow in obese-hyperglycemic mice. Am J Physiol 1998;275:E594–E601
    連結:
  7. 8. Cecil KM, Schnall MD, Siegelman ES, Lenkinski RE. The evaluation of human breast lesions with magnetic resonance imaging and proton magnetic resonance spectroscopy. Breast Cancer Res Treat 2001;68(1):45-54.
    連結:
  8. 9. Claudia Neumann-Haefelin, Johanna Kuhlmann, Ulrich Belz et al. Determinants of Intramyocellular Lipid Concentrations in Rat Hindleg Muscle. Mag Reson Med 2003; 50:242–248
    連結:
  9. 10. Claudia Neumann-Haefelin, Anja Beha, Johanna Kuhlmann, Ulrich Belz et al. Muscle-Type Specific Intramyocellular and Hepatic Lipid Metabolism During Starvation in Wistar Rats. Diabetes 2004; 53:528–534
    連結:
  10. 11. DeFronzo RA, Bonadonna RC, Ferrannini E: Pathogenesis of NIDDM. A balanced overview. Diabetes Care 1992;15:318–368
    連結:
  11. 12. Eisenbarth,G.S., Moriyama,H., Robles,D.T., Liu,E., Yu,L., Babu,S., Redondo,M., Gottlieb,P., Wegmann,D., and Rewers,M. Insulin autoimmunity: prediction/precipitation/prevention type 1A diabetes. Autoimmune Rev. 2002;1:139-145.
    連結:
  12. 13. Frahm J, Bruhn H, Gyngell ML, Merboldt KD, Hanicke W, Sauter R: Localized high-resolution proton NMR spectroscopy using stimulated echoes: initial applications to human brain in vivo. Magn Reson Med 1989; 9:79–93
    連結:
  13. 14. Goodpaster BH, Wolf D. Skeletal muscle lipid accumulation in obesity, insulin resistance, and type 2 diabetes. Pediatr Diabetes. 2004 Dec;5(4):219-26.
    連結:
  14. 15. Häring HU: The insulin receptor: signalling mechanism and contribution to the pathogenesis of insulin resistance. Diabetologia 1991;34:848–861
    連結:
  15. 16. Howe FA, Opstad KS. 1H MR spectroscopy of brain tumours and masses. NMR Biomed 2003;16(3):123-131.
    連結:
  16. 17. Hoyumpa AM Jr, Greene HL, Dunn GD, and Schenker S. Fatty liver: biochemical and clinical considerations. Am J Dig Dis 1975;20: 1142–1170
    連結:
  17. 18. Martin Torriani, Bijoy J. Thomas, Elkan F. Halpern, et al. Intramyocellular Lipid Quantification: Repeatability with 1H MR Spectroscopy. Radiology 2005; 236:609–614.
    連結:
  18. 20. Jagannathan NR, Kumar M, Seenu V, Coshic 0, Dwivedi SN, Julka PK, Srivastava A, Rath GK. Evaluation of total choline from in-vivo volume localized proton MR spectroscopy and its response to neoadjuvant chemotherapy in locally advanced breast cancer. Br J Cancer 2001;84(8):1016-1022.
    連結:
  19. 21. Jucker BM, Schaeffer TR, Haimbach RE et al. Reduction of intramyocellular lipid following short-term rosiglitazone treatment in Zucker fatty rats: an in vivo nuclear magnetic resonance study. Metabolism 2003;52: 218–225
    連結:
  20. 22. Kaji Y, Wada A, Imaoka I, Matsuo M, Terachi T, Kobashi Y, Sugimura K, Fujii M, Maruyama K, Takizawa 0. Proton two-dimensional chemical shift imaging for evaluation of prostate cancer: external surface coil vs. endorectal surface coil. J Magn Reson Imaging 2002;16(6):697-706.
    連結:
  21. 23. Katz-Brull R, Lavin PT, Lenkinski RE. Clinical utility of proton magnetic resonance spectroscopy in characterizing breast lesions. J Nat Cancer Inst 2002;94(16):1197-1203.
    連結:
  22. 24. Kelley DE, Mandarino LJ. Fuel selection in human skeletal muscle in insulin resistance: a reexamination. Diabetes 2000; 49: 677–683.
    連結:
  23. 25. Kelley DE, McKolanis TM, Hegazi RA, Kuller LH, and Kalhan SC. Fatty liver in type 2 diabetes mellitus: relation to regional adiposity, fatty acids, and insulin resistance. Am J Physiol Endocrinol Metab 2003;285: E906–E916
    連結:
  24. 26. Kenneth C., Werner Van S., Frederik De K. et al. Dynamic Contrast-Enhanced MRI of the Pancreas: Initial Results in Healthy Volunteers and Patients With Chronic Pancreatitis. J. Magn. Reson. Imaging 2004;20:990–997
    連結:
  25. 27. Kim JK, Kim DY, Lee YH, Sung NK, Chung DS, Kim OD, Kim KB. In vivo differential diagnosis of prostate cancer and benign prostatic hyperplasia: localized proton magnetic resonance spectroscopy using external-body surface coil. Magn Reson Imaging 1998;16(10):1281-1288.
    連結:
  26. 28. Kitt Falk Petersen, Sylvie Dufour, Douglas Befroy, Michael Lehrke, Rosa E. Hendler, and Gerald I. Shulman. Reversal of Nonalcoholic Hepatic Steatosis, Hepatic Insulin Resistance, and Hyperglycemia by Moderate Weight Reduction in Patients With Type 2 Diabetes. Diabetes 2005;54:603–608
    連結:
  27. 29. Kuhlmann J, Neumann-Haefelin C, Belz U et al. Intramyocellular lipid and insulin resistance: a longitudinal in vivo 1H-spectroscopic study in Zucker diabetic fatty rats. Diabetes 2003;52: 138–144
    連結:
  28. 30. Kvistad KA, Bakken IJ, Gribbestad IS, Ehrnholm B, Lundgren S, Fjosne HE, Haraldseth O. Characterization of neoplastic and normal human breast tissues with in vivo (1)H MR spectroscopy. J Magn Reson Imaging 1999;10(2):159-164.
    連結:
  29. 31. Longo R, Pollesello P, Ricci C, Masutti F, Kvam BJ, Bercich L, Croce LS, Grigolato P, Paoletti S, de Bernard B, and Palma LD. Proton MR spectroscopy in quantitative in vivo determination of fat content in human liver steatosis. J Magn Reson Imaging 1995;5: 281–285
    連結:
  30. 32. Longo R, Pollesello P, Ricci C, Masutti F, Kvam BJ, Bercich L, Croce LS, Grigolato P, Paoletti S, de Bernard B,. Proton MR spectroscopy in quantitative in vivo determination of fat content in human liver steatosis. J Magn Reson Imaging 1995;5(3):281-285.
    連結:
  31. 33. Lorna M. Dickson and Christopher J. Rhodes. Pancreatic beta-cell growth and survival in the onset of type 2 diabetes: a role for protein kinase B in the Akt? Am J Physiol Endocrinol Metab. 2004 Aug;287(2):E192-8.
    連結:
  32. 34. Lorna M. Dickson and Christopher J. Rhodes. Pancreatic -cell growth and survival in the onset of type 2 diabetes: a role for protein kinase B in the Akt? Am J Physiol Endocrinol Metab 2004;287: E192–E198
    連結:
  33. 35. M. Dujardin, S. Sourbron, R. Luypaert, D. Verbeelen, and T. Stadnik. Quantification of Renal Perfusion and Function on a Voxel-by-Voxel Basis: A Feasibility Study. Magnetic Resonance in Medicine 2005;54:841–849
    連結:
  34. 36. M. Iwase, k. Tashiro, y. Uchizono, d. Goto, and m. Yoshinari. Pancreatic islet blood flow in conscious rats during hyperglycemia and hypoglycemia. Am J Physiol Regulatory Integrative Comp Physiol 2001;280: R1601–R1605
    連結:
  35. 37. Maria C. Denis, Umar Mahmood, Christophe Benoist, Diane Mathis, and Ralph Weissleder. Imaging inflammation of the pancreatic islets in type 1 diabetes. PNAS 2004; 101 (34); 12635
    連結:
  36. 38. Martin Torriani, Bijoy J. Thomas, Elkan F. Halpern, et al. Intramyocellular Lipid Quantification: Repeatability with 1H MR Spectroscopy. Radiology 2005; 236:609–614.
    連結:
  37. 39. Masanori Iwase, Yuji Uchizono, Kenji Tashiro, Daisuke Goto, and Mitsuo Iida. Islet Hyperperfusion During Prediabetic Phase in OLETF Rats, a Model of Type 2 Diabetes. Diabetes 2002;51:2530–2535
    連結:
  38. 40. Maschio and Livio Luzi Maffi, Francesco De Cobelli, Alberto Battezzati, Antonio Secchi, Alessandro Del Gianluca Perseghin, et al. Insulin resistance, intramyocellular lipid content, and plasma adiponectin in patients with type 1 diabetes. Am J Physiol Endocrinol Metab 2003;285:1174-1181
    連結:
  39. 41. Maythem Saeed, Michael F. Wendland, Norbert Watzinger, Haydar Akbari, Charles B. Higgins. MR contrast media for myocardial viability, microvascular integrity and perfusion. Eur J Radiology 2000;34 ;179–195
    連結:
  40. 42. Michael Stumvoll, Andreas Fritsche, and Hans-Ulrich Häring. Clinical Characterization of Insulin Secretion as the Basis for Genetic Analyses. Diabetes. 2002 Feb;51 Suppl 1:S122-9
    連結:
  41. 43. Michael W. Schwartz and Daniel Porte, Jr. Diabetes, Obesity, and the Brain. Science 2005;307:375-9
    連結:
  42. 44. Mukherji SK, Schiro S, Castillo M, Kwock L, Muller KE, Blackstock W. Proton MR spectroscopy of squamous cell carcinoma of the extracranial head and neck: in vitro and in vivo studies. AJNR Am J Neuroradiol 1997; 18(6): 1057-1072.
    連結:
  43. 45. Pari V. Pandharipande, Glenn A. Krinsky, Henry Rusinek, Vivian S. Lee. Perfusion Imaging of the Liver: Current Challenges and Future Goals. Radiology 2005;234:661–673
    連結:
  44. 46. Ram weiss, sylvie dufour, aida groszmann, et al. Low adiponectin levels in adolescent obesity: a marker of increased intramyocellular lipid accumulation. J Clin Endocrinol Metab. 2003;88:2014-8.
    連結:
  45. 47. Ranjana Sinha, Sylvie Dufour, Kitt Falk Petersen, et al. Assessment of skeletal muscle triglyceride content by 1H nuclear magnetic resonance spectroscopy in lean and obese adolescents: relationships to insulin sensitivity, total body fat, and central adiposity. Diabetes. 2002;51(4):1022-7.
    連結:
  46. 48. Rico-Sanz J, Hajnal JV, Thomas EL, Mierisova S, Ala-Korpela M, Bell JD. Intracellular and extracellular skeletal muscle triglyceride metabolism during alternating intensity exercise in humans. J Physiol 1998; 510(pt 2):615–622.
    連結:
  47. 49. Ross JS, Delamarter R, Hueftle MG, et al. Gadolinium-DTPA-enhanced MR imaging of the postoperative lumbar spine: time course and mechanism of enhancement. AJR Am J Roentgenol 1989;152: 825–834.
    連結:
  48. 50. Schrauwen-Hinderling VB, van Loon LJ, Koopman R, Nicolay K, Saris WH, Kooi ME. Intramyocellular lipid content is increased after exercise in nonexercising human skeletal muscle. J Appl Physiol 2003; 95:2328–2332.
    連結:
  49. 51. Schwarz AJ, Maisey NR, Collins DJ, Cunningham D, Huddart R, Leach MO. Early in vivo detection of metabolic response: a pilot study of 1H MR spectroscopy in extracranial lymphoma and germ cell tumours. Br J Radiol 2002;75(900):959-966.
    連結:
  50. 52. Seppala-Lindroos A, Vehkavaara S, Hakkinen AM, Goto T, Westerbacka J, Sovijarvi A, Halavaara J, Yki-Jarvinen H: Fat accumulation in the liver is associated with defects in insulin suppression of glucose production and serum free fatty acids independent of obesity in normal men. J Clin Endocrinol Metab 2002;87:3023–3028
    連結:
  51. 3. Alexandra E. Butler, Juliette Janson, Walter C. Soeller, and Peter C. Butler. Increased -Cell Apoptosis Prevents Adaptive Increase in beta-Cell Mass in Mouse Model of Type 2 Diabetes. Diabetes 2003;52:2304–2314
  52. 19. J. Tintěra, p. Harantová, p. Suchánek, et al. Quantification of intra-abdominal fat during controlled weight reduction: assessment using the water-suppressed breath-hold MRI technique. Physiol. Res. 2004;53:229-234.