Title

附有系統參數之平差模式觀測量方差估計

Translated Titles

Estimations of Variances of the observables for the Adjustment Models with Systematic Parameters

Authors

張雅玲

Key Words

系統參數 ; 方差與協方差估計 ; systematic parameters ; estimation of variance-covariance components

PublicationName

臺灣大學土木工程學研究所學位論文

Volume or Term/Year and Month of Publication

2005年

Academic Degree Category

碩士

Advisor

許榮欣

Content Language

繁體中文

Chinese Abstract

以往方差估計理論建立於無系統誤差殘留的網形中,本文中提出在附有系統參數之平差模式下,如何以觀測量品質進行方差估計,並獲得網形最佳之權估計,同時求解未知參數與系統參數之估值與精度,並透過統計檢定檢驗系統參數之顯著性。實驗驗證台灣一等一級水準網(2001)中有三條測線殘留系統誤差,且估計水準點高程時受殘留之系統誤差影響產生偏差,故本文最後提出以附加三個系統參數重新進行平差,以獲得較接近真實狀況之水準網成果。

English Abstract

The techniques of the estimations of variance-covariance components used to be based on the assumption that there remained no systematic errors in the observations. This research brings forth the estimations of the variance-covariance components for the observation equations with systematic parameters. The proposed technique enables a more appropriate weight matrix to be formed for the network and hence more proper estimates for the unknown parameters, systematic and nonsystematic as well. The experiments indicated that there were systematic errors remained in the three leveling lines of the First-Order class I leveling network of Taiwan (2001), and that the effects due to the systematic errors on the elevations and their precisions were eliminated by adding correspondingly three systematic parameters to the three lines of the Taiwan network.

Topic Category 工學院 > 土木工程學研究所
工程學 > 土木與建築工程
Reference
  1. 1. Horn S.D., Horn R.A. & Duncan D.B. “Estimating heteroscedastic variances in liner models”, J.Am.Statist.Assoc.70:380-385.
    連結:
  2. 2. Hsu R.S. ,1996 , “Convergence of the variance of unite weight in a leveling network adjustment ” , Survey Review 33:404-410.
    連結:
  3. 3. Hsu R.S. ,1999 , “ An alternative expression for the variance factor in using iterated almost unbiased estimation ” , Journal of Geodesy , 73 , pp.173-179.
    連結:
  4. 5. Hsu R.S., 2004, “Best invariant quadratic unbiased estimation of variance and covariance components for the adjustment models with systematic parameters”, Dept. of Civil Engineering National Taiwan University ,手稿。
    連結:
  5. 6. Koch K.R., 1986, “Maximum likelihood estimate of variance component” Bulletin Géodésique .60:329-338.
    連結:
  6. 9. Rao C.R., 1971 , “ Estimation of variance and covariance components—MINQUE theory ” , J. of Multivariate Analysis 1: pp.257-275.
    連結:
  7. 18. 蘇哲民,2003,「TWVD2001一等水準觀測資料之系統誤差分析」,國立成功大學測量工程學系碩士論文。
    連結:
  8. 19. 鄞守毅,2004,「台灣一等一級水準網之重新平差計算」,國立臺灣大學土木工程學系碩士論文。
    連結:
  9. 20. 林曾進,2004,「台灣一等一級水準網測量殘留之系統誤差研究」,國立臺灣大學土木工程學系碩士論文。
    連結:
  10. 4. Hsu R.S., 2003, “Adjustment Treatments of Surveying Measurements”, Dept. of Civil Engineering National Taiwan University , chapter7.
  11. 7. Lucht H., 1983, “Neighborhood correlations among observations in leveling networks. Precise leveling”, 38 Contribution to the Workshop on Precise Leveling , Hannover , pp.315-326.
  12. 8. Lucas J.R., Bengstone J.M.& Zlikoski , 1985, “Estimation of variance components in leveling using iterated almost unbiased estimation”, Proc 3rd Symp North American Vertical Datum, Rockville, pp.375-387.
  13. 10. Schaffrin B,1983, “On the covariance estimation between repeated levelings as applied to the testnet Pfungstadt.”, EOS 64 (18):209
  14. 11. Vanicek P. and Craymer M . ,1983, “Autocorrelation functions in the search for systematic errors in leveling”, Manuscripta Geodaetica ,Vol.8, pp321-341.
  15. 12. 魯林成、於宗侍,1982,「測量平差基礎」,測繪出版社,pp.80-82。
  16. 13. 陶本藻,1986,「附加系統參數的平差模型和假設檢驗」,測繪學報1986年11月第15捲第4期,pp.241-248。
  17. 14. 高書屏、許榮欣、甯方璽、孫福生,1996,「水準網內殘存之系統誤差偵測」,第十五屆測量學術及應用研討會,國立政治大學,pp.435-444。
  18. 15. 內政部,2001,「一等水準測量規範」,台北。
  19. 16. 曾清涼、楊名、劉啟清、余致義、李宏麟,2001,「一等一級水準網測量督導查核工作總報告書」,成功大學。
  20. 17. 陳銘川,1999,「應用疊代近乎無偏估計法釐定觀測量方差之研究」,國立台灣大學碩士論文。