透過您的圖書館登入
IP:18.227.48.131
  • 學位論文

釕金屬亞乙烯基及釕金屬亞丙二烯基 化合物之合成及相關反應

Synthesis and Reactivity of Ruthenium Vinylidene and Allenylidene Complexes

指導教授 : 林英智

摘要


在Cβ 含有環己烯取代基的釕金屬環丙烯基化合物,與矽烷基疊氮(TMSN3, (TMS = (CH3)3Si)) 反應可生成釕金屬疊氮化合物([Ru]-N3,([Ru] = Cp(PPh3)2Ru)) 及相關的有機產物。推測反應的機制是先由三甲基矽集團(TMS)與環丙烯基行親 電加成反應,隨即伴隨三甲基矽集團的水解而形成陽離子性的釕金屬亞乙烯基錯 合物([[Ru]=C=C(C6H9)CH2R][N3])。接著N3 攻擊Cα而第2 個三甲基矽集團加成 在環己烯取代基的雙鍵上,伴隨著一連串的電子轉移及脫氮氣(N2)而得到N 配位 在金屬上的釕金屬異氰化合物[[Ru]NCC(C6H10)CH2R][N3],接著伴隨含有飽和六 環的有機物脫落及金屬疊氮化合物的生成。 將三苯基磷的配位基(PPh3)換成1,2-雙二苯基磷乙烷(dppe),也可以合成出釕 金屬環丙烯基及呋喃化合物。而此呋喃化合物在室溫下容易與空氣中的氧氣作用 而形成O2 加成的釕金屬雙酯化合物。環丙烯基化合物則可與矽烷基疊氮作用而 形成穩定的N 配位釕金屬氰化合物。 若將環戊烯取代基(Cp)置換成茚取代基(indenyl ligand),可以合成出含有茚 取代基的陽離子釕金屬亞乙烯基錯合物,此類化合物與鹼作用可行分子內的環化 反應而形成釕金屬環丙烯基或呋喃化合物。含有茚取代基的呋喃化合物在室溫下 可以穩定存在,而若與矽烷基疊氮作用則形成釕金屬疊氮化合物及相關的有機產 物。相較於含環戊烯取代基的釕金屬呋喃化合物與矽烷基疊氮作用的結果,是切 斷釕金屬與C 之間的單鍵而形成相關的有機呋喃產物;含茚取代基的釕金屬呋 喃化合物與矽烷基疊氮作用的結果是行開環的反應。 含茚取代基的陽離子性的釕金屬異氰化物(isocyanide complex)也可以被合 成出,此類的化合物在以二氯甲烷為反應溶劑中加入鹼去質子化可得釕金屬吖丙 啶基化合物(ruthenium azirinyl complex);若反應溶劑改為丙酮則可得到含五員環 的釕金屬惡唑啉基化合物(ruthenium oxazolinyl complex)。 釕金屬亞丙二烯基化合物(ruthenium allenylidene complex)可以和格里納試劑 (Grignard reagent)在低溫下作用形成穩定的釕金屬-炔基(ruthenium σ−alkynyl complex)化合物。這一系列的化合物加入四氟硼酸(HBF4)質子化可以得到一系列 的釕金屬亞乙烯基化合物。反式- 氯基- 釕金屬- 炔基 (trans-chloride-ruthenium-alkyne) 化合物也可經由其相關的亞丙二烯基化合物和 格里納試劑作用而被合成出。加入四氟硼酸(HBF4)質子化後也可以得到一系列的 釕金屬亞乙烯基化合物。而此類的亞乙烯基化合物在溶液中容易脫去金屬而得到 相關的含有烯基和炔基(enyne)的有機化合物。 反式-異氰基-釕金屬-炔基(trans-isocyanide-ruthenium-alkyne)化合物,反式- 氯基-釕金屬-炔基(trans-chloride-ruthenium-alkyne)及反式-釕金屬二炔基(trans -ruthenium-dialkyne)化合物也可以順利的被合成出。此系列的化合物可以在空氣 中穩定存在。

並列摘要


Ruthenium cyclopropenyl complexes can be obtained by the deprotonation reaction of the ruthenium vinylidene complexes. When the vinylidene complexes containing an ester group at Cγ the reaction yielded thermodynamic ruthenium furyl complexes products. The reaction of the ruthenium cyclopropenyl complexes 6 containing a cyclohexenyl group at Cβ with TMSN3 (TMS = (CH3)3Si) yielded the ruthenium azide [Ru]-N3 ([Ru] = Cp(PPh3)2Ru) and free organic compound 7. The reaction may proceed by an electrophilic addition of a trimethylsilyl group to the three-membered-ring followed by hydrolysis to afford [[Ru]=C=C(C6H9)CH2R][N3]. Further nucleophilic addition of azide at Cα and electrophilic addition of a second trimethylsilyl group at the olefinic carbon of cyclohexenyl ring followed by loss of N2 gave the N-coordinated nitrile complexes [[Ru]NCC(C6H10)CH2R][N3] (9). Change the triphenylphosphine ligand for dppe ligand, the ruthenium furyl complex 12a and cyclopropenyl complex 12d containing cyclohexenyl group also can be obtained via deprotonation of vinylidene complexes 11. Further reaction of the metal furyl complex 12a with O2 yielded diester complex 13a. The reaction of cyclopropenyl complex 12d with TMSN3 gave the N-coordinated nitrile complex 14d as stable product. Change the cyclopentadienyl ligand for indenyl ligand, ruthenium vinylidenecomplexes 16 also can be obtained in high yield. Deprotonation of these vinylidene complexes yielded metal furyl complexes 18 when an ester substituent at Cγ and yielded cyclopropenyl complexes 17. The reaction of the ruthenium α-alkoxyfuryl complexes 18 containing indenyl group with TMSN3 gives the ruthenium azide [Ru]-N3 ([Ru]=(η5-C9H7)(PPh3)2Ru) and organic compounds 5. Treatment of the cyclopropenyl complexes 17 with TMSN3 also affords the ruthenium azide and organic compounds via opening the three-membered ring. Ruthenium isocyanide complex 21 containing indenyl ligand can be obtained in high yield. By deprotonation of these isocyanide complex yield ruthenium azirine 22 in CH2Cl2 and yield oxazoline complexes 23 in acetone, respectively. The cationic ruthenium allenylidene complex 24 containing a dppe ligand can be synthesized by the literature method. Then the allenylidene complex reacts with Grignard reagents to yield the σ−alkynyl derivatives 25a−25d. Protonation of 25a with HBF4·Et2O leads to the vinylidene complex 27a as the final product. Similarly, the vinylidene complex 26 also can be obtained. Protonation of complex 25b yielded the unexpected product 28b. The trans-chloride-ruthenium-allenylidene complexes react with Grignard reagents to yield the σ−alkynyl derivatives 29. Protonation of 29 with HBF4·Et2O also leads to the vinylidene complex 30. Complex 30 is stable in solid state. When dissolved inCH2Cl2 at room temperature the organic enyne product 31 can be obtained through the demetalation reaction. The trans-isocyanide-ruthenium-alkyne complexes 33 also can be obtained in high yield. The trans-chloride-ruthenium-alkyne 34 and dialkynyl complex 36 containing cyclohexenyl group also can be obtained in moderate yield. Both complexes are stable.

並列關鍵字

vinylidene allenylidene cyclopropene

參考文獻


1. (a) Pezet, F.; Daran, J. C.; Sasaki, I.; Ait-Haddou, H.; Balavoine, G. G. A. Organometallics, 2000, 19, 4008. (b) Burk, M. J.; Hems, W.; Herzberg, D.; Malan, C.; Zanotti-Gerosa, A. Org. Lett. 2000, 2, 4173. (c) Alonso, D. A.; Nordin, S. J. M.; Roth, P.; Tarnai, T.; Andersson, P. G.; Thommen, M.; Pittelkow, U. J. Org. Chem. 2000, 65, 3116. (d) Yamakawa, M.; Ito, H.; Noyori, R. J. Am. Chem. Soc. 2000, 122, 1466. (e) Trost, B. M.; Toste, F. D.; Pinkerton, A. B. Chem. Rev. 2001, 101, 2067. (f) Choi, M. Y.; Han, M. Y.; Choi, Y. K.; Lee, J. K.; Kim, M. J.; Park, J. J. Org. Chem. 2002, 67, 9481. (g) Kitamura, M.; Tsukamoto, M.; Bessho, Y.; Yoshimura, M.; Kobs, U.; Widhalm, M.; Noyori, R. J. Am. Chem. Soc. 2002, 124, 6649. (h) Xie, J. H.; Wang, L. X.; Fu, Y.; Zhu, S. F.; Fan, B.-M.; Duan, H. F.; Zhou, Q. L. J. Am. Chem. Soc. 2003, 125, 44045.
26. Pombeiro, A. J. L.; Guedea da Silva, M. F. C.; Michelin, R. A. Coord. Chem. Rev. 2001, 218, 43.
4. (a) Ting, P. C.; Lin, Y. C.; Lee, G. H.; Cheng, M. C.; Wang, Y. J. Am. Chem. Soc. 1996, 112, 6433. (b). Lin, Y. C. J. Organomet. Chem. 2001, 617, 141.
5. Yang, J. Y.; Lo, Y. H.; Huang, S. L.; Lin, Y. C. Organometallics 2001, 20, 3621.
36. Yang, J. Y.; Lo, Y. H.; Huang, S. L.; Lin, Y. C. Organometallics, 2001, 20, 17.

延伸閱讀