Title

純碳氫及雙極性磷光OLED主體材料之合成、性質與應用

Translated Titles

Synthesis, Properties, and Applications of Pure-hydrocarbon and Bipolar Host Materials For Electrophosphorescent Devices

Authors

丁浩淳

Key Words

主體材料 ; OLED

PublicationName

臺灣大學化學研究所學位論文

Volume or Term/Year and Month of Publication

2010年

Academic Degree Category

碩士

Advisor

汪根欉

Content Language

繁體中文

Chinese Abstract

本論文總共分為兩部分,在第一部分我們設計出一系列以茚芴為主並具有適合三重態能階的純碳氫主體材料,可將其應用於綠光和紅光電致磷光元件。在設計概念上,我們引入芳香環和環旋芴基於茚芴中,藉由這些立體障礙基團可以減少分子間作用力使聚集和活化雙體的情形有效減少,不僅可減少在元件上放光不純的行為,也可使熱性質和成膜性上升。另外在InDSF中,我們可以發現苯環和芴基間的距離為3.29 Å,已足以產生分子內的π-π作用力。以InDSF做為主體材料應用在綠光元件時外量子效率可達到17.6%,而InF3tt及ITS做為主體材料在紅光元件效率上可分別達到19.2% 及17.3%。在論文第一部份中將深入探討這三個純碳氫材料的物理性質、晶體結構和元件效能。在第二部分中我們將缺電子的benzimidazole和推電子的indolocarbazole結合,利用Donor-Acceptor的概念合成出TICCBI及TICNBI這兩個雙極性材料。Indolocarbazole本身具有良好的電洞傳輸能力,且其剛硬的結構使螢光有高量子效率,而benzimidazole可做為立體障礙基團使分子間減少堆疊,也同時提升了熱穩定性。過去常使用Fischer indolization進行indolocarbazole的合成,但常常會有產物難以純化及反應時間過長的問題,所以我們改用indole、甲醛和triethoxymethane進行脫水環化的反應,這個方法不僅可以節省反應時間,也可有非常高的產率。而TICNBI及TICCBI做為主體材料應用在磷光元件上表現相當好,尤其TICNBI在紅光和綠光元件上分別具有22%及16.2%的外部放光效率。

English Abstract

There are two parts of this thesis. In the first part, we designed and synthesized a series of pure hydrocarbon host materials which exhibit suitable triplet energy levels for green and red phosphorescent OLED. In the molecular design, we combine aromatic rings and fluorenes to the indenofluorene core through spiro-linkage. By means of increasing steric hindrance in indenofluorene, we can prevent intermolecular interaction such as π-aggregates and excimer formation which may cause an additional emission band and a decrease in electroluminescence; therefore, thermal and morphological stability can be enhanced. The distance between phenyl and fluorene in InDSF is 3.29 Å, suggesting sufficient intramolecular π-π interaction. Devices incorporating with InDSF, InF3-tt, and ITS doped with Os or Ir complexes emitters as host materials showed the maximum EL quantum efficiency of 17.6%, 19.2% and 17.3% for electrophosphorescence, respectively. In this thesis, we will report the physical properties, X-ray structures, and device characteristics.In the second part, we synthesized the bipolar host materials combining electron-withdrawing benzimidazole and electron-donating indolocarbazole. Instead of using Fischer indolization which would lead to a mixture of products, we unitized condensation reaction of indole, formaldehyde, and triethoxymethane. This new synthetic route was not only time-saving but also with high yield for indolocarbazole. High performance of PhOLEDs have been reached with TICCBI and TICNBI as host materials. Among the devices, TICNBI-based device shows the maximum EL quantum efficiency of 22% and 16.2% for red and green electrophosphorescence, respectively.

Topic Category 基礎與應用科學 > 化學
理學院 > 化學研究所
Reference
  1. 2. Mach, R.; Mueller, G. O. Semicond. Sci. Techno. 1991, 6, 305
    連結:
  2. 3. Pope, M; Kailmann, H. P. J. Chem Phys. 1963, 38, 2042.
    連結:
  3. 4. Vincett, P. S.; Barlow, W. A.; Roberts, G. G. Thin Solid Films. 1982, 94,171.
    連結:
  4. 5. Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913.
    連結:
  5. 9. 紀良臻,國立台灣大學化學所博士論文,以咔唑及芴為核心之給體-受體分子的合成、性質與應用,中華民國99年3月;Ting, H. W. National Chiao Tung University in Electro-optial Engineering for the degree of master,Solvent effect on the Triplet Energy Transfer in Polymer light-Emitting Diodes, R.O.C. 2007
    連結:
  6. 10. 陳金鑫;黃孝文, 有機電激發光材料與元件, 五南出版社,中華民國95年9月
    連結:
  7. 11. Tang, C. W.; VanSlyke, S. A.; Chen, C. H. J. Appl. Phys. 1989, 65, 3610.
    連結:
  8. 14. Ishida, T.; Kobayashi, H.; Nakato, Y. J. Appl. Phys. 1993, 73, 4344.
    連結:
  9. 16. Maruyama, T.; Fukui, K. Thin Solid Films 1991, 203, 297.
    連結:
  10. 17. Vasu, V.; Subrahmanyam, A. Thin Solid Films 1990, 193/194, 696.
    連結:
  11. 20. Inada, H.; Shirota, Y. J. Mater. Chem. 1993, 3, 319.
    連結:
  12. 28. Wu, C.-C.; Liu, T.-L.; Hung, W.-Y.; Lin, Y. T.; Wong, K.-T.; Chien, Y.-Y.; Chen, R.-T. J. Am. Chem. Soc. 2003, 125, 3710.
    連結:
  13. 30. Blochwitz, J.; Pfeiffer, M.; Fritz, T.; Leo, K. Appl. Phys. Lett. 1998, 73, 729.
    連結:
  14. 31. VanSlyke, S. A.; Chen, C.-H.; Tang, C.-W.; Appl. Phys. Lett. 1996, 69, 2160.
    連結:
  15. 37. Kraft, A.; Grimsdale, A. C.; Holmes, A. B. Angew. Chem., Int. Ed. 1998, 37, 402.
    連結:
  16. 39. Scherf, U. J. Mater. Chem. 1999, 9, 1853.
    連結:
  17. 40. Neher, D. Macromol. Rapid Commun. 2001, 22, 1365.
    連結:
  18. 41. Setayesh,S. ; Marsitzky, D.; Müllen, K. Macromolecules 2000, 33, 2016.
    連結:
  19. 50. Facchetti, A.; Marks, T. J. J. Am. Chem. Soc. 2009, 131, 5586.
    連結:
  20. 60. 紀良臻,國立台灣大學化學所碩士論文, 茚芴之共軛寡聚物的合成與性質研究, 中華民國95年6月
    連結:
  21. 63. 黃世強, 國立台灣大學化學所碩士論文,1.含噻吩、芴基混成之星狀有機共軛材料2.以茚芴為主體之共軛寡聚物的合成與性質研究,中華民國 94年6月
    連結:
  22. 65. 廖元利,國立台灣大學化學所博士論文, 2,2’雙取代與2,2’,7,7’四取代旋環雙芴材料之合成及其光電應用, 中華民國95年6月
    連結:
  23. 67. Zhengguo, Z.; Moore, J. S. J. Org. Chem. 2000, 65, 116.
    連結:
  24. 69. Poriel, C,; Barriere, F.; Thirion, D.; Rault-Berthelot, J. Chem. Eur. J. 2009, 15, 13304.
    連結:
  25. 72. Liu, Y.; Ma, H.; Jen, A. K-Y. Chem. Commun. 1998, 2747.
    連結:
  26. 73. Ge,Z.; Hayakawa, T.; Ando, S.; Ueda, M.; Akiike, T.; Miyamoto, H.; Kajita, T.; Kakimoto. M. Adv. Funct. Mater. 2008, 18, 584.
    連結:
  27. 76. Shi, J.; Tang, C. W.; Chen, C. H. U.S. Patent 5646948 (1997).
    連結:
  28. 82. Wim Dehaen; J. Org. Chem. 2007, 72, 7207.
    連結:
  29. 85. 陳又銘,國立台灣大學化學所博士論文, 雙極性光電材料之合成及應用
    連結:
  30. 參考文獻
  31. 1. 城戶淳二, 有機EL, 93年6月 p.3 .
  32. 6. Saito, S. Japan.J.Appl.phys.part2, 1988,27,L713
  33. 7. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K. Friend, R. H.; Burn, P. L.; Holmes, A. B. Nature 1990, 347, 539.
  34. 8. 顏溪成, 旋轉塗佈製程研究, 行政院國家科學委員會, 1995
  35. 12. Shen, C.; Hill, I. G. A.; Kahn, Adv. Mater. 1999, 11, 1523.
  36. 13. Haskal, E. I.; Curioni, A.; Seidler, P. F.; Andreoni, W. Appl. Phys. Lett. 1997, 71, 1151.
  37. 15. Bender, M.; Trube, J.; Stollenwerk, J. Appl. Phys. A 1999, 69, 397.
  38. 18. Inada, H. Synth.Met. 2000, 111, 387.
  39. 19. Kuwabara, Y.; Ogawa, H.; Inada, H.; Noma, N.; Shirota, Y. Adv. Mater. 1994, 6, 677.
  40. 21. Salbeck, J.; Yu, N.; Bauer, J.; Weissoörtel, F.; Bestgen, H. Synth. Met. 1997, 91, 209.
  41. 22. (a) Adachi, C.; Tsutsui, T.; Saito, S. Appl. Phys. Lett. 1989, 55, 1489. (b) Pommerehne, J.; Vesweber, H.; Guss, W.; Mahrt, R. F.; Bassler, H.; Porsch, M.; Daub, J. Adv. Mater. 1995, 7, 551. (c) Tsutsui, T.; Saito, S. Appl. Phys. Lett. 1990, 56, 779.
  42. 23. (a) Kido, J.; Ohtaki, C.; Hongawa, K.; Okuyama, K. Nagi, K. Jpn. J. Appl. Phys. Part 2 1993, 32, L917. (b) Kido, J.; Hongawa, K.; Okuyama, K.; Nagi, K. Appl. Phys. Lett. 1993, 63, 2627. (c) Kido, J.; Kimura, M.; Nagi, K. Science 1995, 267, 1332.
  43. 24. Fink, R.; Heischkrl, Y.; Thelakkat, M.; Schmidt, H.-W.; Jonda, C.; Huppauff, M. Chem. Mater. 1998, 10, 3620.
  44. 25. Lo, S.-C.; Male, N. A. H.; Markham, J. P. J.; Magennis, S. W.; Burn, P. L.; Salata, O. V.; Samuel, I. D. W. Adv. Mater. 2002, 14, 975.
  45. 26. Hosokawa, C.; Tokailin, H.; Higashi, H. and Kusumoto, T. Appl. Phys. Lett. 1992, 60, 1220.
  46. 27. Hamada, Y.; Sano, T.; Fujita, T.; Nishio, Y.; Shibata, Y. Japan J. Appl. Phys. 1993, Part 2, 32, L514.
  47. 29. Elschnerm, A.; Bruder, F.; Heuer, H.-W.; Jonas, F.; Karbach, A.; Kirchmeyer, S.; Thurm. S. Syn. Met. 2000, 111, 139.
  48. 32. Baldo, M. A.; O’Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R. Nature, 1998, 395, 151.
  49. 33. Baldo, M. A.; Lamansky, S.; Burrows, P. E.; Thompson, M. E.; Forrest, S. R. Appl. Phys. Lett. 1999, 75, 4.
  50. 34. Adachi, C.; Baldo, M. A.; Thompson, M. E.; Forrest S. R. J. Appl. Phys. 2001, 90, 5048.
  51. 35. Wu, C.-C.; Lin, Y.-T.; Chiang, H.-H.; Cho, T.-Y.; Chen, C.-W.; Wong, K.-T.; Liao, Y.-L.; Lee, G.-H.; Peng, S.-M. Appl. Phys. Lett. 2002, 81, 577.
  52. 36. Kreyenschmidt, M.; Klarner, G.; Fuhrer, T.; Ashenhurst, J.; Karg, S.; Chen, W. D.; Lee, V. Y.; Scott, J. C.; Miller, R. D. Macromolecules 1998, 31, 1099.
  53. 38. Bernius, M. T.; Inbasekaran, M.; O’Brien, J; Wu, W. Adv. Mater. 2000, 12, 1737.
  54. 42. Grimsdale, A. C.; Lecle`re, Ph.; Lazzaroni, R.; MacKenzie, J. D.; Murphy, C.; Setayesh, S.; Silva, C.; Friend, R. H.; Müllen, K. Adv. Funct. Mater. 2002, 12, 729.
  55. 43. Jacob, J.; Sax, S.; Piok, T.; List, E. J. W.; Grimsdale, A. C.; Müllen, K. J. Am. Chem. Soc. 2004, 126, 6987.
  56. 44. Jacob, J.; Zhang, J.; Grimsdale, A.; Müllen, K. Macromolecules 2003, 36, 8240.
  57. 45. Jacob, J.; Sax, S.; Piok, T.; List, E. J. W.; Grimsdale, A. C.; Müllen, K. Macromolecules 2005, 38, 9933.
  58. 46. Vak, D.; Lim, B.; Lee, S.-H.; Kim, D.-Y. Org. Lett. 2005, 7, 4329.
  59. 47. Horhant, D.; Liang, J.-J.; Virboul, M.; Poriel, C.; Alcaraz, G.; Rault-Berthelot, J. Org. Lett. 2006, 2, 257.
  60. 48. Oyamada, T.; Chang, C.-H.; Chao, T.-C.; Fang, F.-C.; Wu, C.-C.; Wong, K. T.; Sasabe, H.; Adachi, C. J. Phys. Chem. C. 2007, 111, 108.
  61. 49. Zheng, Q.; Jung, J.B.; Sun, J.; Katz, H. E. J. Am. Chem. Soc. 2010, 132,5394.
  62. 51. Merlet, S.; Birau, M.; Wang, Z. Y. Org. Lett. 2002, 4, 2157.
  63. 52. Hadizad, T.; Zhang, J.; Wang, Z. Y.; Gorjanc, T. C.; Py, C. Org. Lett. 2005, 7, 795.
  64. 53. Poriel, C.; Liang, J.-J.; Rault-Berthelot, J.; Barriere, F.; Cocherel, N.; Slawin, A. M. Z.; Horhant, D.; Virboul, M.; Alcaraz, G.; Audebrand, N.; Vignau, L.; Huby, N.; Wantz, G.; Hirsch, L. Chem. Eur. J. 2007, 13, 10055.
  65. 54. Cocherel,N.; Slawin, A. M. Z.; Rault-Berthelot, J.; Barriere, F.; Audebrand, N.; Slawin, A. M. Z.; Vignau, L. Chem. Eur. J. 2008, 14, 11328.
  66. 55. Wong, K.-T.; Chien, Y.-Y.; Chen, R.T.; Wu, C.-C. ;Wang, C.-F.; Lin, Y.-T.; Chiang, H.-H.; Hsieh, P.-Y.; Chou, C.H.; Su, Y. O.; Lee, G.-H.; Peng, S.-M. J.Am.Chem.Soc. 2002, 124, 11576.
  67. 56. Wong , K.-T.; Liao,Y.-L.; Lin, Y.-T.; Su, H.-C.; Wu, C.-C. Org. Lett. 2005, 23, 5131.
  68. 57. Ma, D.; Jiang, Z.; Yao, H.; Zhang, Z.; Yang, C.; Liu, Z.; Tao, Y.; Qin, J. Org. Lett. 2009, 11, 2607.
  69. 58. Chi, L.-C.; Hung, W.-Y.; Chiu, H.-C.; Wong, K.-T. Chem. Commun. 2009, 3892.
  70. 59. Wu, C.-C.; Liu, T.-L.; Hung, W.-Y.; Lin, Y.-T.; Wong, K.-T.; Chen, R.-T.; Chen, Y.-M.; Chien, Y.-Y. J. Am. Chem. Soc. 2003, 125, 3710.
  71. 61. Merlet, S.; Birau, M.; Wang, Z. Y. Org. Lett. 2002, 4, 2157.
  72. 62. (a)Wang, Z. Y.; Qi, Y. Macromolecules 1994, 27, 625. (b)White, D. M. J. Org. Chem. 1974, 39, 1951.
  73. 64. (a)Sutcliffe, F. K.; Shahidi, H. M.; Patterson, D. J. Soc. Dyes Colors, 1978, 94, 306.(b)Lupo, D.; Salbeck, J.; Schenk, H.; Stehlin, T.; Stern, R.; Wolf, A. US Patent 5840217, Nov 24, 1998.
  74. 66. Wu, F.-I.; Dodda, R.; Reddy, D. S.; Shu, C.-F. J. Mater. Chem. 2002, 12, 2893.
  75. 68. (a)John, H.; Weisburger, E. K. J. Am. Chem. Soc. 1950, 72, 4250.(b) Johnson, B.; J. Am. Chem. Soc. 1932, 54, 4415.(c) Hiroko, H.; Akira, T.; Hiroshi, H.; Takami, O. J. Mater. Chem. 2001, 4, 1063.
  76. 70. Poriel, C,; Barriere, F.; Thirion, D.; Metivier, R.; Jeannin, O.; Rault-Berthelot, J. Org. Lett. 2009, 11, 4794.
  77. 71. Kowada,T.; Kuwabara. T.; Ohe, K. J. Org. Chem. 2010, 75, 906.
  78. 74. Ge, Z.; Hayakawa, T.; Ando, S.; Ueda, M.; Akiike, T.; Miyamoto, H.; Kajita, T.; Kakimoto. M. Chem. Mater. 2008, 20, 2532.
  79. 75. Su, S.-J.; Sasabe, H.; Takeda, T.; Kido, J. Chem. Mater. 2008, 20, 1691.
  80. 77. Takizawa, S.-Y.; Montes, V. Anzenbacher, J. P. Chem. Mater. 2009, 21, 2452.
  81. 78. Wu, Y.; Li, Y.; Gardner, S.; Ong, B. S. J. Am. Chem. Soc. 2005, 127, 614.
  82. 79. Boudreault, P.-L. T.; Wakim, S.; Blouin, N.; Simard, M.; Tessier, C.; Tao, Y.; Leclerc, M. J. Am. Chem. Soc. 2007, 129, 9125.
  83. 80. Tsai, J.-H.; Chueh, C.-C.; Lai, M.-H.; Wang, C.-F.; Chen, W.-C.; Ko, B.-T.; Ting, C. Macromolecules, 2009, 42, 1897.
  84. 81. (a)Wakim, S.; Bouchard, J.; Simard, M.; Drolet, N.; Tao, Y.; Leclerc, M. Chem. Mater. 2004, 16, 4386.;(b) Li, Y.; Wu, Y.; Gardner, S.; Ong, B. S. Adv. Mater. 2005, 17, 849.; (c)Wu, Y.; Li, Y.; Gardner, S.; Ong, B. S. J. Am. Chem. Soc. 2005, 127, 614. ; (d)Li, Y.; Wu, Y.; Ong, B. S. Macromolecules 2006, 39, 6521.; (e)Boudreault, P.-L. T.; Wakim, S.; Blouin, N.; Simard,; M. Tessier, C.; Tao, Y.; Leclerc, M. J. Am. Chem. Soc. 2007, 129, 9125. ;
  85. 83. (a)Zhao, H.-P.; Tao, X.-T.; Wang, P.; Ren, Y.; Yang, J.-X.; Yan, Y.-X.; Yuan, C.-X.; Liu, H.-J.; Zou, D.-C.; Jiang, M.-H. Org. Electron. 2007, 8, 673.; (b) Zhao, H.-P.; Tao, X.-T.; Wang, F.-Z.; Ren, Y.; Sun, X.-Q.; Yang, J.-X.; Yan, Y.-X.; Zou, D.-C.; Zhao, X.; Jiang, M.-H. Chem. Phys. Lett. 2007, 439, 132.; (c) Velasco, D.; Jankauskas, V.; Stumbraite, J.; Grazulevicius, J. V.; Getautis, V. Synth. Met. 2009, 159, 654.
  86. 84. Tsai, J.-H.; Chueh, C.-C.; Lai, M.-H.; Wang, C.-F.; Chen, W.-C.; Ko, B.-T.; Ting, C. Macromolecules, 2009, 42, 1897.
  87. 熱聚型電洞傳輸材料之合成及應用, 中華民國98年7月
  88. 86. Ulf, P.; Johann, M. Arch. Pharm. (Weinheim) 1987,320, 280.
  89. 87. Jackson, A. H.; Prasitpan, N.; Shannon, P. V. R.; Tinker, A. C. J. Chem. Soc. PerkinTrans. I, 1987, 2543.