Title

力場模式建構市區幹道混合車流機車微觀模擬

Translated Titles

Force Field Model for Motorcycle Microscopic Simulation under Mixed Traffic Flow on Urban Arterials

DOI

10.6342/NTU.2014.02913

Authors

陳昱辰

Key Words

微觀車流模擬 ; 混合車流 ; 力場模式 ; 社會力 ; 無車道模式 ; 機車 ; Microscopic Traffic Simulation ; Mixed Traffic Flow ; Force Field Model ; Social Force ; Non-lane Based Model ; Motorcycle

PublicationName

臺灣大學土木工程學研究所學位論文

Volume or Term/Year and Month of Publication

2014年

Academic Degree Category

碩士

Advisor

許添本

Content Language

繁體中文

Chinese Abstract

台灣的市區道路中,汽機車混合的車流形式在台灣隨處可見,而不同車種互動的關係極為複雜,時常造成交通壅塞,並且日益增加的機車數量已經在台灣造成了嚴重的交通問題,在過去十年,台灣引進了許多國外的微觀車流軟體,用以評估交通改善方案,但國外軟體面對混合車流的情況仍難以有效呈現混合車流間的特性,為解決此問題,必須建構一套具有混合車流特性的微觀車流軟體,因此必須先針對車流狀況,建構其微觀車流模式。 在混合車流之微觀車流模式中,機車的行為最為複雜,不僅需考慮縱向影響因素,由於機車的機動性能高,其側向影響因素也須納入考慮,且機車在路段行駛時並不如汽車般須限制在車道線中行駛,其側向偏移動作與汽車大相逕庭,故無法以傳統微觀車流區分跟車以及變換車道行為表達,因此為了描述此複雜的行為,本研究以無車道力場模式描述機車與周遭車輛間的互動,將車輛看作原子,以原子間作用力表達機車與其他車輛間的交互關係,並考慮不同車種間影響的差異,建構機車與其他車輛間相互作用行為。 由模式驗證中看出本研究模式能夠有效預測機車的行徑,並表現出機車受到其他車輛影響後的加減速及閃避動作,從微觀驗證中可看出,本模式對於行進方向的預測十分精準,並可在模式中重現機車的錯車以及鑽行行為,巨觀驗證的角度來看,模式中車輛間的交互作用符合混合車流的特色,能夠滿足現況之驗證指標,故可說明本模式對現況車流的解釋能力。 以此模式的解釋能力,建構屬於台灣混合車流下的微觀模擬軟體,使之更加符合真實環境,用以提供交通工程改善案評估工具,以解決台灣目前的交通狀況,使未來車流更加順暢,為本研究之期許。

English Abstract

In Taiwan, it is very common to see motorcycles riding with cars on the same roads everywhere, which kind of traffic flow is called “mixed traffic flow”. Under this kind of traffic flow, the interaction between different types of vehicles is very complicated, which often causes traffic congestion. In addition, the increasing quantity of motorcycle has already caused severe traffic problems in Taiwan. Over the past decade, we had been introduced many foreign microscopic traffic simulation software to assess transportation improvement programs; however, these foreign simulation software faced the same problem on efficiently presenting the characteristics of mixed traffic flow, which commonly happened in Taiwan. In order to solve this problem, it is a must to construct the software, which sets with mixed traffic microscopic traffic characteristics. Constructing the microscopic traffic simulation models based on this condition is the important part before starting to design the software. The behaviors of motorcycle forwarding are the most complicated in the microscopic traffic simulation models of the mixed traffic flow. Not only the longitudinal effects are needed to be considered, but also the lateral effects should be taken into consideration for the high mobility of motorcycles. Also, when a motorcycle rides on the road, it has no lane line restriction like a car that has to drive in the lanes. Since the lateral movements between motorcycles and vehicles are very different, the behavior of motorcycles cannot just be separated into the two: car-following and lane-changing behavior In order to describe those complex behaviors, this study took vehicles as atoms with different sizes, described the interactions between motorcycles and other vehicles under the model of non-lane force field. Also, we consider the impact of different types of vehicles and construct the behaviors of motorcycles as interacting between other vehicles. From the model validation in this study, it can be confirmed that this model can predict the behavior of motorcycles, and show the movements such as swerving and deceleration when motorcycles influenced by other vehicles. From the microscopic validation, this can be known that the model can precisely predict the direction of travel, and is able to rebuild the behaviors of motorcycles such as ‘crossing’ and ‘drilling’. From the view of macroscopic validation, the interaction mode between vehicles accords to the moving characteristics of motorcycles in the mixed traffic flow. Knowing that all validation items can pass the statistical test, this model has a high level of ability of explanation. By using the ability of explanation of this model to construct micro-simulation software for the mixed traffic flow in Taiwan, we can make it meet the real environment. Also, this can provide traffic engineering for improving the current traffic situation in Taiwan, and make the in Taiwan traffic run much smoothly.

Topic Category 工學院 > 土木工程學研究所
工程學 > 土木與建築工程
Reference
  1. [1] 李建豪,市區幹道汽機車超車行為路徑選擇決策模式,台灣大學土木工程研究所碩士論文,民國101年。
    連結:
  2. [8] 孫將瓴,市區道路小汽車變換車道防撞警示系統之研究,台灣大學土木工程研究所碩士論文,民國95年。
    連結:
  3. [10] 許家齊,市區道路微觀混合車流機率式跟車模式之研究,台灣大學土木工程研究所碩士論文,民國101年。
    連結:
  4. [12] 黃俊評,市區幹道混合車流公車微觀模擬模式之研究,台灣大學土木工程研究所碩士論文,民國102年。
    連結:
  5. [13] 溫傑華,離散選擇模式之理論與應用,國防管理學報第三十卷第二期,民國98年。
    連結:
  6. [15] Asano, M., Iryo, T., Kuwahara, M., Microscopic pedestrian simulation model combined with a tactical model for route choice behavior, Transportation Research Part C, Vol. 18, pp. 842–855, 2010.
    連結:
  7. [18] Ben-Akiva, M. & Lerman, S. R., Discrete choice analysis: theory and application to travel demand, MIT Press, Cambridge, Massachusetts, 1985.
    連結:
  8. [19] Brackstone, M., McDonald, M., Car-following: a historical review, Transportation Research Part F 2, pp. 181-196, 1999.
    連結:
  9. [21] Daamen, W., Hoogendoorn, S.P., Free speed distributions –Based on empirical data in different traffic conditions, Pedestrian and Evacuation Dynamics 2005, pp 13-25, 2005.
    連結:
  10. [25] Gipps, P.G., “A model for the structure of Lane-change decisions”, Transportation Part B, Vol. 20, No.5, pp. 403-414, 1986.
    連結:
  11. [26] Gipps, P.G., A Behavioral Car-Following Model for Computer Simulation, Transportation Research Part B, Vol. 15B, pp105-111, 1981
    連結:
  12. [27] Gunay, B., "Car following theory with lateral discomfort", Transportation Research Part B: Methodological, vol. 41, no. 7, pp. 722-735, 2007.
    連結:
  13. [29] Hidas, P., Modeling Lane Changing and Merging in Microscopic Traffic Simulation. Transportation Research C, Vol.10, pp.351-371, 2002.
    連結:
  14. [30] Hidas, P., "Modeling vehicle interactions in microscopic simulation of merging and weaving", Transportation Research Part C: Emerging Technologies, vol. 13, no. 1, pp.37-62, 2005.
    連結:
  15. [31] Helbing, D., Self-organizing pedestrian movement, Environment and Planning B: Planning and Design 2001, vol. 28, pp. 361-383, 2001.
    連結:
  16. [32] Helbing D, Tilch B, Generalized force model of traffic dynamics', Physical Review E 58, pp. 133-138, 1998.
    連結:
  17. [33] Helbing D, Molnar P, Social force model of pedestrian dynamics, Physical Review E 5, pp. 4282-4286, 1995.
    連結:
  18. [34] Hoogendoorn, S. P., Vehicle-type and Lane-Specific Free Speed Distributions on Motorways A novel estimation approach using censored observations, TRB 2005 Annual Meeting CD-ROM, 2005.
    連結:
  19. [35] Hoogendoorn , S.P., Microscopic Calibration and Validation of Pedestrian Models – Cross-Comparison of Models using Experimental Data, Pedestrian and Evacuation Dynamic 2005, pp. 253-265, 2005.
    連結:
  20. [37] Johansson, A., Helbing, D., Shukla, P.K., Specification of a Microscopic Pedestrian Model by Evolutionary Adjustment to Video Tracking Data, Advs. Complex Syst. 10, 271 ,2007.
    連結:
  21. [41] Rodr ́ıguez, G., Non-Parametric Estimation in Survival Models, Princeton University, 2005.
    連結:
  22. [42] Rahman, M., Chowdhury, M., Review of Microscopic Lane-Changing Models and Future Research Opportunities, IEEE transactions on intelligent transportation systems, pp.1942-1956, 2013.
    連結:
  23. [44] Toledo, T., Integrated driving behavior modeling, PhD dissertation, Massachusetts Institute of Technology, USA, 2003.
    連結:
  24. [47] Yang, Q., & Koutsopoulos, H. N., A Microscopic Traffic Simulator Evaluation of Dynamic Traffic Management System. Transportation Research C, Vol. 4, pp. 113-129, 1996.
    連結:
  25. [48] Zheng, Z., Recent developments and research needs in modeling lane changing, Transportation Research Part B Vol.60, pp. 16–32, 2014.
    連結:
  26. [2] 何佳娟,微觀汽機車混合車流模式之研究,國立交通大學運輸科技與管理學研究所碩士論文,民國91年。
  27. [3] 林育瑞,力場車流模式,中華民國運輸學會98年學術論文研討會,民國98年。
  28. [4] 胡順章,高速公路雙車道路段變換車道行為之研究,淡江大學土木工程研究所,民國83年。
  29. [5] 范俊海,機車領地效應之研究,2012海峽兩岸智慧型運輸系統學術論文研討會,民國101年。
  30. [6] 陳世泉,混合車流中機車駕駛行為之分析,國立台灣大學土木工程研究所碩士論文,民國82年。
  31. [7] 張瓊文,以模糊推論系統與細胞自動機方法探討混合車流環境下機車行進行為,國立交通大學運輸科技與管理學研究所博士論文,2004。
  32. [9] 許添本,交通技術研發與人才培育規劃研究(4/4),中華民國運輸學會,民國102年。
  33. [11] 黃國平,混合車流二維座標模擬模式之建立及驗證,台灣大學土木工程研究所碩士論文,民國72年。
  34. [14] Ahmed, K. I., Modeling drivers' acceleration and lane changing behavior, PhD dissertation, Massachusetts Institute of Technology, USA, 1999.
  35. [16] A. D. May, Traffic Flow Fundamentals, Prentice Hall, Englewood Cliffs, New Jersey, pp.162-171, 1990.
  36. [17] Antonini, G., A Discrete Choice Modeling Framework for Pedestrian Walking Behavior with Application to Human Tracking in Video Sequences, PhD dissertation, Ing ́enieur en T ́el ́ecommunications de nationalit ́e italienne, 2005.
  37. [20] Daamen, W., and S.P. Hoogendoorn. Experimental Research of Pedestrian Walking Behavior. Transportation Research Record: Journal of the Transportation Research Board. No. 1828, pp. 20- 30., 2003.
  38. [22] Drew, D.R., Microscopic Density Characteristics, Traffic Flow Theroy and Control, pp. 161-191, 1990.
  39. [23] Frain, J. C., An Introduction to Matlab for Econometrics, TEP Working Paper No. 0110, Department of Economics Trinity College Dublin, 2010.
  40. [24] Fellendorf, M., Vortisch, P., Microscopic Traffic Flow Simulator VISSIM, Fundamentals of Traffic Simulation, pp. 63-93, 2010.
  41. [28] Hoefs, D.H., Untersuchung des Fahrverhaltens in Fahrzeug Kolonnen, Forschungsberichte des Institut fur Verkehrswesen, Heft 140, Universitat Karlsruhe, 1972.
  42. [36] Ishizawa, T., Development of motorcycle running simulation model under mixed traffic flow and ITS verification, 12th WCTR, 2010.
  43. [38] Lewis, R.M. and H.L. Michael, Simulation of Traffic Flow to Obtain Volume Warrants for Intersection Control, Highway Research Record 15, pp. 1-43, 1963.
  44. [39] Nguyen, X.L., A Concept of Safety Space for Describing Non-Lane-Based Movements of Motorcycles., PhD dissertation, Tokyo Institute of Technology, 2012.
  45. [40] Nguyen, X.L., Hanaoka, S., A microscopic simulation model for motorcycle traffic safety assessment in Vietnam, 土木計画学研究・講演集 Vol.45, 2012.
  46. [43] Todosiev, E.P., The action point model of driver vehicle system. Engineering Experiment Station, The Ohio State University, Columbus, Ohio, Report 202 A-3, 1963.
  47. [45] Tzu-Chang Lee, “An Agent-Based Model to Simulate Motorcycle Behaviour in Mixed Traffic Flow”, Department of Civil and Environmental Engineering, Imperial College London, United Kingdom, 2007.
  48. [46] Widemann, R., Simulation de Stranssenverkehrsflusses, Schriftenreihe des Institutsfur Verkehrswesen, Heft 8, Universitat Karlsruhe, 1974.