Title

磁旋行波放大器模擬和其時域上之單一模態分析

Translated Titles

Gyro-TWT Amplifier Simulation with Time-Domain Single Mode Analysis

DOI

10.6342/NTU201802150

Authors

林聖倫

Key Words

磁旋行波放大器 ; 準穩態 ; 自洽解 ; 功率變化 ; 時域 ; gyro-TWT amplifier ; quasi-steady state ; self-consistent solution ; power variation ; time-domain

PublicationName

臺灣大學物理學研究所學位論文

Volume or Term/Year and Month of Publication

2018年

Academic Degree Category

碩士

Advisor

朱國瑞

Content Language

繁體中文

Chinese Abstract

在研究磁旋行波放大器(gyrotron traveling-wave tube amplifier)的過程中, 因引入了準穩態(quasi-steady state)與自洽解(self-consistent solution)求解的方式而跳脫了電磁波放大過程中的功率變化,直接得出最終於準穩態時的輸出功率。然而若能掌握磁旋行波放大器的時域(time-domain)放大過程之功率變化,便能對磁旋行波放大器的設計更多一層的見解,也或許能利用輸出功率從無到穩定時的轉換過程設計出新的應用。 本文引入了迭代法以計算出磁旋行波放大器時域上的功率變化,基於準穩態時的自洽解作為基礎,給予假設和問題簡化,以進行迭代。

English Abstract

In the process of researching gyrotron traveling-wave tube amplifier, the power variation in the electromagnetic wave amplification process is ignored due to the introduction of the quasi-steady state and the self-consistent solution, and the final output power in quasi-steady state is directly obtained. However, if one have the information of the time-domain power variation during the the amplification process, one may have more insights into designing a gyrotron traveling-wave tube amplifier, or one may construct an new application by utilizing this power variation information. In this thesis, an iterative method is introduced to calculate the power variation during the amplification process of gyrotron traveling-wave tube amplifier in time-domain. Based on the self-consistent solution in quasi-steady state, the iteration is calculated with the help of assumptions and problem simplification methods.

Topic Category 基礎與應用科學 > 物理
理學院 > 物理學研究所
Reference
  1. [1] Chu K. The electron cyclotron maser[J]. Reviews of modern physics, 2004, 76(2): 489.
  2. [2] Idehara T, Saito T, Ogawa I, et al. The potential of the gyrotrons for development of the sub-terahertz and the terahertz frequency range—a review of novel and prospective applications[J]. Thin Solid Films, 2008, 517(4): 1503-1506.
  3. [3] Kumar N, Singh U, Bera A, et al. A review on the sub-THz/THz gyrotrons[J]. Infrared Physics & Technology, 2016, 76: 38-51.
  4. [4] Chu K, Chen H, Hung C, et al. Ultrahigh gain gyrotron traveling wave amplifier[J]. Physical review letters, 1998, 81(21): 4760.
  5. [5] Chu K R, Chen H Y, Hung C L, et al. Theory and experiment of ultrahigh-gain gyrotron traveling wave amplifier[J]. IEEE Transactions on Plasma Science, 1999, 27(2): 391-404.
  6. [6] Song H, McDermott D, HirataY, et al. Theory and experiment of a 94 ghz gyrotron traveling-wave amplifier[J]. Physics of Plasmas, 2004, 11(5): 2935-2941.
  7. [7] Arora A, Thottappan D M, K Jain P. Particle-in-cell simulation of uniformly loaded w-band gyro-twt to study its multi-mode beam-wave interaction behavior[J]. International Journal, 2016, 5: 41-47.
  8. [8] DuCH, Liu P K. Linear full-wave-interaction analysis of a gyrotron-traveling-wave-tube amplifier based on a lossy dielectric-lined circuit[J]. IEEE Transactions on Plasma Science, 2010, 38(6): 1219-1226.
  9. [9] Du C H, Liu P K. Nonlinear full-wave-interaction analysis of a gyrotron-traveling-wave-tube amplifier based on a lossy dielectric-lined circuit[J]. Physics of Plasmas, 2010, 17(3): 033104.
  10. [10] Liu B, Feng J,Wang E, et al. Design and experimental study of a ka-band gyro-twt with periodic dielectric loaded circuits[J]. IEEE Transactions on Plasma Science, 2011, 39(8): 1665-1672.
  11. [11] Alaria M K, Ghosh S K, Choyal Y, et al. Design and simulation of lossy interaction structure for ka-band gyro-twt[J]. IEEE Transactions on Plasma Science, 2013, 41(8): 2264-2268.
  12. [12] Wang J, Luo Y, Xu Y, et al. Simulation and experiment of a ku-band gyro-twt[J]. IEEE Transactions on Electron Devices, 2014, 61(6): 1818-1823.
  13. [13] Liu G, Xue Q, Zhang S, et al. Development and demonstration of a ka-band gyrotron traveling-wave tube[J]. IEEE Transactions on Plasma Science, 2018.
  14. [14] Zhao Q, Dong A, Li H, et al. Numerical simulation study of double-beam magnetron-injection guns for high-power gyrotrons[J]. IEEE transactions on plasma science, 2007, 35(2): 402-406.
  15. [15] 夏蒙重, 鄢揚, 劉大剛, 等. 全三維110GHz 和220GHz 同軸腔雙注迴旋管數值模擬研究[J]. 物理學報, 2013, 62(19): 191301-191301.
  16. [16] Glyavin M, Manuilov V, Idehara T. A double-beam magnetron-injection gun for third-harmonic continuous wave 1-thz gyrotron[J]. Physics of Plasmas, 2013, 20(12): 123303.
  17. [17] Manuilov V, GlyavinMY, Sedov A, et al. Design of a second harmonic double-beam continuous wave gyrotron with operating frequency of 0.79 thz[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2015, 36(12): 1164-1175.
  18. [18] Ginzburg N S, Glyavin M Y, Malkin A M, et al. Improvement of stability of high cyclotron harmonic operation in the double-beam thz gyrotrons[J]. IEEE Transactions on plasma science, 2016, 44(8): 1303.
  19. [19] Idehara T, Glyavin M, Kuleshov A, et al. A novel thz-band double-beam gyrotron for high-field dnp-nmr spectroscopy[J]. Review of Scientific Instruments, 2017, 88(9): 094708.
  20. [20] Bratman V, Cross A, Denisov G, et al. High-gain wide-band gyrotron traveling wave amplifier with a helically corrugated waveguide[J]. Physical review letters, 2000, 84(12): 2746.
  21. [21] Burt G, Samsonov S, Ronald K, et al. Dispersion of helically corrugated waveguides: Analytical, numerical, and experimental study[J]. Physical review E, 2004, 70(4): 046402.
  22. [22] Cross A, HeW, Phelps A, et al. Helically corrugated waveguide gyrotron traveling wave amplifier using a thermionic cathode electron gun[J]. Applied physics letters, 2007, 90(25): 253501.
  23. [23] Samsonov S V, Gachev I G, Denisov G G, et al. Ka-band gyrotron traveling-wave tubes with the highest continuous-wave and average power[J]. IEEE Transactions on Electron Devices, 2014, 61(12): 4264-4267.
  24. [24] Mishakin S V, Samsonov S V, Denisov G G. A helical-waveguide gyro-twt at the third cyclotron harmonic[J]. IEEE Transactions on Electron Devices, 2015, 62(10): 3387-3392.
  25. [25] HuW, ShapiroMA, Kriescher K, et al. 140-ghz gyrotron experiments based on a confocal cavity[J]. IEEE transactions on plasma science, 1998, 26(3): 366-374.
  26. [26] Sirigiri J, Shapiro M, Temkin R. High-power 140-ghz quasioptical gyrotron traveling-wave amplifier[J]. Physical review letters, 2003, 90(25): 258302.
  27. [27] Guan X, Fu W, Yan Y. A 0.4-thz second harmonic gyrotron with quasi-optical confocal cavity[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2017, 38(12): 1457-1470.
  28. [28] YaoY,Wang J, Liu G, et al. Experimental study on rf circuits of confocal gyrotron travelling-wave amplifiers[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2018: 1-12.
  29. [29] Bateman H. Tables of integral transforms[Z]. [S.l.]: McGraw-Hill, 1954.
  30. [30] Hung C, Tsai Y, Chu K. A study of open-end cavities by the field-energy method[J]. IEEE transactions on plasma science, 1998, 26(3): 931-939.
  31. [31] Chu K R. Time-domain analysis of open cavityies - an exercise in computational research[M]. [S.l.: s.n.], 2013
  32. [32] Huang Y, Chu K, Thumm M. Self-consistent modeling of terahertz waveguide and cavity with frequency-dependent conductivity[J]. Physics of Plasmas, 2015, 22(1): 013108.
  33. [33] Jackson J D. Classical electrodynamics[M]. 3rd ed. [S.l.]: John Wiley & Sons, 1998: 111-113
  34. [34] Jackson J D. Classical electrodynamics[M]. 3rd ed. [S.l.]: John Wiley & Sons, 1998: 366-368
  35. [35] Collin R E. Foundations for microwave engineering[M]. 2nd ed. [S.l.]: John Wiley & Sons, 2007: 197
  36. [36] Shen M, Chu K. Electromagnetic wave interactions with a conducting medium: A graphic illustration of dispersive properties[J]. American Journal of Physics, 2014, 82(2): 110-112.
  37. [37] McDermott D B, Song H H, Hirata Y, et al. Design of a W-band TE/sub 01/mode gyrotron traveling-wave amplifier with high power and broad-band capabilities[J]. IEEE Transactions on Plasma Science, 2002, 30(3): 894-902.
  38. [38] Press W H, Teukolsky S A, Vetterling W T, et al. Numerical recipes 3rd edition: The art of scientific computing[M]. 3rd ed. New York, NY, USA: Cambridge University Press, 2007
  39. [39] Meurer A, Smith C P, Paprocki M, et al. Sympy: symbolic computing in python[J/OL]. PeerJ Computer Science, 2017, 3: e103. https://doi.org/10.7717/peerj-cs.103.
  40. [40] Fu W, Guan X, Yan Y. High harmonic terahertz confocal gyrotron with nonuniform electron beam[J]. Physics of Plasmas, 2016, 23(1): 013301.
  41. [41] Jones E, Oliphant T, Peterson P, et al. SciPy: Open source scientific tools for Python[EB/OL]. 2001–. http://www.scipy.org/.
  42. [42] Oliphant T E. A guide to numpy: volume 1[M]. [S.l.]: Trelgol Publishing USA, 2006