Title

華南南嶺地區早燕山期(侏羅紀)侵入岩定年學、全岩地球化學、鍶-釹同位素與磷灰石地球化學研究與地體構造意義

Translated Titles

Geochronological, whole-rock elemental and Sr-Nd isotopic and apatite geochemical studies of Early Yanshanian (Jurassic) intrusives from Nanling Mountains area, South China and their tectonic implications

DOI

10.6342/NTU.2008.03091

Authors

謝佩珊

Key Words

中生代花崗岩 ; 鋯石鈾-鉛定年 ; 磷灰石地球化學 ; 南嶺 ; 華南 ; Mesozoic granitoids ; Nanling Mountains ; South China

PublicationName

臺灣大學地質科學研究所學位論文

Volume or Term/Year and Month of Publication

2008年

Academic Degree Category

博士

Advisor

陳正宏

Content Language

繁體中文

Chinese Abstract

在華南廣泛出露的中生代侵入岩主要形成於三個時期:三疊紀(印支期)、侏羅紀(早燕山期)及白堊紀(晚燕山期)。岩性上來說,岩漿產物以酸性的花崗岩為主;在體積上,則以早燕山期岩漿活動最為強烈,產生的花崗岩占了中生代花崗岩近一半的出露面積。本研究針對南嶺地區的早燕山期侵入岩,分析鋯石鈾-鉛年齡、全岩與磷灰石地球化學及鍶-釹同位素組成,以討論早燕山期侵入岩的時空分佈與岩石成因。除此之外,還量測了南嶺地區的早燕山期花崗岩體型態,藉此瞭解花崗岩體與區域滑移斷層的關連,最後結合所有資料推論出華南中生代之地體構造演化。 南嶺早燕山期侵入岩基本上形成於三個時期:早期 (190-175 Ma)、主期 (165-150 Ma)與晚期 (145-135 Ma)。主要由高鉀鈣鹼性系列、在蛛網圖中表現出多變的大離子半徑元素含量、Nb, Sr, Ti, Zr和P虧損及地殼來源鍶-釹同位素值 (ISr=0.712~0.717; eNd(T)=-8.8~-11.6)的花崗岩基所組成。其他以小岩體方式侵入的岩類則是中鉀鈣鹼性系列輝長岩和鉀玄岩質正長岩類,蛛網圖中兩者無明顯Nb、Ta虧損現象,並有明顯地函來源貢獻的鍶-釹同位素組成 (ISr=0.704~0.708;eNd(T)=+3.0~-2.6)。利用磷灰石地球化學特徵判別S型與I型花崗岩,在本研究中成功地應用在華南三疊紀大容山和白堊紀福州-漳州花崗岩體上,然而侏羅紀南嶺花崗岩卻表現出介於兩者之間的中間特性。磷灰石的稀土元素分佈圖明顯與全岩的鋁飽和指數與釹同位素值有關,且南嶺花崗岩表現出不同於大容山、拉克蘭造山帶S型花崗岩磷灰石或福州-漳州岩體、拉克蘭造山帶I型花崗岩磷灰石之獨特的圖形。根據鍶-釹同位素結果推論出南嶺花崗岩具有兩個可能的地殼來源:主要為加里東期花崗岩質地殼與較次要的印支期花崗岩質地殼。 形成於早期的侵入岩(A型花崗岩、輝長岩)數量少且集中在贛南與十杭帶;早燕山主期以花崗岩為主的侵入岩大量產生,並成為南嶺地區的主體,同時也標誌了早燕山期岩漿事件的高峰,在短時間內產生廣泛的花崗岩岩漿活動,暗示著華南當時處於一個岩石圈極度張裂的狀態;早燕山晚期的侵入岩在數量上相對來說稀少,表示此時岩漿活動已經趨於和緩,晚期少數正長岩、雙模式火山岩與基性岩脈的出現標表示地函物質上湧侵入局部張裂地區,支援了這一個時期南嶺整體已趨於穩定,處於局部拉張的狀態。值得注意的是在整個早燕山期不同次期的岩漿活動中,特定地區(贛南、粵中、十杭帶)重複出現被認為是張裂環境下的岩漿產物,表示這些構造弱帶在整個早燕山期事件中持續提供管道,讓地函來源岩漿上升至地表。整體來說,原地地殼重熔似乎是最適當的模式來解釋大量產生的侏羅紀南嶺花崗岩。少數存在的鹼性岩、輝長岩或基性岩脈代表著地函物上湧侵入局部地表張裂處的現象。張裂或裂谷的環境造成來自於上部地函的基性岩漿(推測由軟流圈與富集岩石圈地函不同程度混合組成)底侵於地殼下方提供了大量的熱源讓地殼達到重熔的溫度,進而產生大量的地殼(加里東期和印支期地殼)來源的早燕山期花崗岩岩漿。呈現東西展布的南嶺花崗岩明顯受控於高錯移量的東西向滑移斷層,而構造的高錯移速度相信是造成正常對稱與同應力方向拉長型岩體的主因。 華夏陸塊上的印支期過鋁質花崗岩應屬於三疊紀時陸塊擠壓碰撞同造山期的產物,在印支期岩漿活動結束到早燕山期早期岩漿事件開始之間,存在約15 Ma的岩漿休止期,反應華南從印支期擠壓環境演變到早燕山期伸張環境的構造轉換,而這個轉變的控制原因,推測可能是碰撞加厚之華南陸塊岩石圈地函的拆層。岩石圈地函拆層讓地體環境從擠壓轉變為伸張,並重新活化了陸塊上已存在的古北東向及東西向滑移斷層系統,同時伴隨著有南北向拉張的產生,促使地函物質上湧。根據上述觀察與推論,本研究認為在侏羅紀太平洋板塊隱沒尚未影響華南陸塊的情形之下,早燕山期岩漿活動可合理解釋為印支期華南-印支半島陸陸碰撞造山運動的後造山地質事件 (post-orogenic event)。

English Abstract

The widespread Mesozoic intrusives in South China were emplaced in three main periods: Triassic (Indosinian), Jurassic (Early Yanshanian) and Cretaceous (Late Yanshanian). Lithologically, granites predominate over basic and intermediate rocks, and volumetrically, Early Yanshanian granitoids are the most widely exposed in the Cathaysia Block (approximately 50% of the total surface area of Mesozoic granitoids). In this study, zircon U-Pb ages, whole-rock and apatite geochemical and Sr-Nd isotopic analyses were carried out to provide better constraints on the temporal-spatial distribution and the petrogenetic model for Early Yanshanian intrusives. Furthermore, the shape for Early Yanshanian granitoids in Nanling Mountains was analyzed to understand the relationship between granitic bodies and regional strike-slip faults and the Mesozoic tectonic evolution of the South China. The Early Yanshanian intrusives were basically formed in three stages: 190-175 Ma (early), 165-150 Ma (main), and 145-135 Ma (late). They consist dominantly of high-K calc-alkaline granitic batholiths that generally show variable concentrations of LILE, significant depletion in Nb, Sr, Ti, Zr and P in spidergram and crustal-derived Sr-Nd isotope compositions (ISr=0.712~0.717; eNd(T)=-8.8~-11.6). Those formed as small plutons are medium-K calc-alkaline gabbros and shoshonitic syenites which have insignificant depletion in Nb and Ta and more depleted Sr-Nd isotope compositions (ISr=0.704~0.708; eNd(T)=+3.0~-2.6) to granitoids. Apatite geochemistry has been suggested as a sensitive indicator of the crystallization environment and the distribution of trace elements in apatite can, therefore, be used to distinguish S-type and I-type granites. Such an application to the Triassic Darongshan and Cretaceous Fuzhou-Zhangzhou granites in S China is generally valid. However, it is less applicable to the intermediary type Jurassic Nanling Mountains granites. REE distribution patterns of apatite strongly depend on the host rock ASI value and Nd isotope composition, and the majority of NLM apatites can define a kind of pattern that is distinguishable from Darongshan and Fuzhou-Zhangzhou apatites, or Lachlan Folded Belt S- and I-type apatites. Furthermore, Sr and Nd isotope evidence indicates that two possible crustal sources for Nanling Mountains granitic magmas can be represented predominantly by the pre-Mesozoic (mainly Caledonian) and subordinately by the pre-Yanshanian (mainly Indosinian) granitic rocks. Intrusives of the early stage (A-type granites and gabbro) are less and concentrated in the southern Jiangxi and Shi-Hang zone. Intrusives (mainly granitoids) of the main stage are widespread in the Nanling Mountains region and are the essence of the Early Yanshanian magmatism. The intensive main stage magmatism formed within a short time span suggests that the SE China was largely under an extensional environment. Intrusives of the late stage are scarce, indicating that the Late Yanshanian magmatism was waned. Presence of syenites, mafic dikes and even bimodal volcanics is a sign of mantle-derived melts injected into the localized extensional areas. It is worth to note that some specialized areas, like southern Jiangxi, central Guangdong and Shi-Hang zone, are characterized by record of repeated mantle-derived magmatism which was generated under extensional environment. Therefore, in situ crustal melting is the most plausible model to account for the genesis of Jurassic Nanling Mountains granites. The existence of sporadic alkali rock, gabbro and mafic dike indicates local mantle input at places where crustal extension prevailed. Extensional or rifting tectonism causing uprising of mantle-derived magmas to underplate beneath the crust can provide the heat source for remelting of overlying crust materials. It is obvious that the distribution of intrusives in the Nanling Mountains granites were closely related to regionally deep, concealed faultings that underwent high lateral displacements. The high displacement velocity is suggested to be the main factor to affect intrusions with normal asymmetry and same trending with the local principal stretching direction. The Indosinian peraluminous granites in Cathyasia Block are thought to be the Triassic syn-orogenic products. It was followed by a magmatically inactive perioid for ~15 Myr before onset of the early-stage Early Yanshanian event, probably reflecting the change of tectonic setting from compressional to extensional. Consequently, the pre-existing NE-trending sinistral shears (

Topic Category 基礎與應用科學 > 地球科學與地質學
理學院 > 地質科學研究所
Reference
  1. 林宜臻 (2007) 藏東南白堊紀至古新世花崗岩類與火山岩之地球化學及岩石成因。台灣大學地質科學研究所碩士論文,81頁。
    連結:
  2. Andersen T. (2002) Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192, 59-79.
    連結:
  3. Barbarin, B., 1999. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos 46, 605-626.
    連結:
  4. Bea, F., 1996. Residence of REE, Y, Th and U in granites and crustal protoliths: Implication for the chemistry of crustal melts. Journal of Petrology 37, 521-552.
    連結:
  5. Belousova, E.A., Walters, S., Griffin, W.L., O'Reilly, S.Y., 2001. Trace element signatures of apatites from granitoids of Mount Isa Inlier, north-west Queensland, Australia. Australian Journal of Earth Sciences 48, 603-619.
    連結:
  6. Belousova, E.A., Griffin, W.L., O’Reilly, S.Y., Fisher, N.I., 2002. Apatite as an indicator mineral for mineral exploration: trace-element compositions and their relationship to host rock type. Journal of Geochemical Exploration 76, 45-69.
    連結:
  7. Black L.P., Kamo S.L., Allen C.M., Aleinikoff J.N., Davis D.W., Korsch R.J. and Foudoulis C. (2003) TEMORA 1: A new zircon standard for Phanerozoic U-Pb geochronology. Chemical Geology, 200, 155-170.
    連結:
  8. Carter, A., Roques, D., Bristow, C., Kinny, P., 2001. Understanding Mesozoic accretion in Southeast Asia: Significance of Triassic thermotectonism (Indosinian orogeny) in Vietnam. Geology 29, 211-214.
    連結:
  9. Carter, A., Clift, P.D., 2008. Was the Indosinian orogeny a Triassic mountain building or a thermotectonic reactivation event? Comptes Rendus Geoscience 340, 83-93.
    連結:
  10. Cawood, P.A., Nemchin, A.A., Freeman, M., Sircombe, K. 2003. Linking source and sedimentary basin: detrital zircon record of sediment flux along a modern river system and implications for provenance studies. Earth and Planetary Science Letters 210, 259–268.
    連結:
  11. Chappell, B.W., 2001. Aluminum saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos 46, 535-551.
    連結:
  12. Chappell, B.W., White, A.J.R., 1974. Two contrasting granite types. Pacific Geology 8, 173-174.
    連結:
  13. Chappell, B.W., White, A.J.R., 2001. Two contrasting granite types: 25 years later. Australian Journal of Earth Sciences 48, 489-499.
    連結:
  14. Charoy, B., 1986. The genesis of the Cornubian Batholith (Southwest England): the example of the Carnmenellis pluton. Journal of Petrology 27, 571-604.
    連結:
  15. Chen, C-H., Tung, T.C., 1984. On-line data reduction for electron microprobe analysis. Acta Geologica Taiwanica 22, 196-200.
    連結:
  16. Chen, C-H., Lin, W., Lu, H.Y., Lee, C.Y., Tien, J.L., Lai, Y.H., 2000. Cretaceous fractionated I-type granitoids and metaluminous A-type granites in SE China: the Late Yanshanian post-orogenic magmatism. Transaction Royal Society of Edinburgh: Earth Science 91, 195-205.
    連結:
  17. Chen, C-H., Lin, W., Lan, C.Y., Lee, C.Y., 2004. Geochemical, Sr and Nd isotopic characteristics and tectonic implications for three stages of igneous rock in the Late Yanshanian (Cretaceous) orogeny, SE China. Transaction Royal Society of Edinburgh: Earth Science 95, 237-248.
    連結:
  18. Chen, C-H., Lu, H.Y., Lin, W., Lee, C.Y., 2006. Thermal event records in SE China coastal areas: Constraints from monazite ages of beach sands from two sides of the Taiwan strait. Chemical Geology 231, 118-134.
    連結:
  19. Chen, C-H., Lee, C.Y., Shinjo, R., 2008. Was there Jurassic paleo-Pacific subduction in South China: Constraints from 40Ar/39Ar dating, elemental and Sr-Nd-Pb isotopic geochemistry of the Mesozoic basalts. Lithos (In press).
    連結:
  20. Chen, G., Grapes, R., 2003. An in-situ melting model of granite formation: Geological evidence from southeast China. International Geology Review 45, 611-622.
    連結:
  21. Chen, J.F., Jahn, B.M., 1998. Crustal evolution of southeastern China: Nd and Sr isotopic evidence. Tectonophysics 284, 101-133.
    連結:
  22. Chiu, H.I., Chung, S.L., Wu, F.Y., Liu, D., Liang, Y.H., Lin, I.J., Xie, L.W., Song, B., Wang, Y., Chu, M.F., 2008. Zircon U-Pb and Hf isotopic constraints from eastern Transhimalayan batholiths on the precollisional tectonic evolution in southern Tibet (Submitted to Tectonophysics).
    連結:
  23. Clemens, J.D., 2003. S-type granitic magmas-petrogenetic issues, models and evidence. Earth Science Review 61, 1-18.
    連結:
  24. Collins, W.J., 1996. Lachlan Fold Belt granitoids: products of three-component mixing. Transaction Royal Society of Edinburgh: Earth Science 87, 171-181.
    連結:
  25. Corti, G., Moratti, G., Sani, F., 2005. Relations between surface faulting and granite intrusions in analogue models of strike-slip deformation. Journal of Structural Geology 27, 1547-1562.
    連結:
  26. Cox, K.G., Bell, J.D., Pankhurst, R.J., 1979. The interpretation of igneous rocks. Geroge, Allen and Unwin, London.
    連結:
  27. Darbyshire, D.P.F., Sewell, R.J., 1997. Nd and Sr isotope geochemistry of plutonic rocks from Hong Kong: implications for granite petrogenesis, regional structure and crustal evolution. Chemical Geology 143, 81-93.
    連結:
  28. Davis, G.A., Fowler, T.K., Bishop, K.M., Brudos, T.C., Friedmann, S.J., Burbank, D.W., Parke, M.A., Burchfiel, B.C., 1993. Pluton pinning of an active Miocene detachment fault system, eastern Mojave desert, California. Geology 21, 627-630.
    連結:
  29. Eby, G.N., 1990. The A-type granitoids: a review of their occurrence and chemical characteristics and speculation on their petrogenesis. Lithos 26, 115-134.
    連結:
  30. Fleet, M.E., Pan, Y.M., 1994. Site preference of Nd in fluorapatite [Ca10(PO4)6F2]. Journal of Solid State Chemistry 111, 78-81.
    連結:
  31. Fontaine, H., Workman, D.R., 1978. Review of the geology and mineral resources of Kampuchea, Laos and Vietnam. In: Proceedings of the 3rd Regional Conference on Geology and Mineral Resources of Southeast Asia. 541-603.
    連結:
  32. Frietsch, R., Perdahl, J.A., 1995. Rare earth elements in apatite and magnetite in Kiruna-type iron ores and some other iron ore types. Ore Geology Reviews 9, 489-510.
    連結:
  33. Frost, C.D., Bell, J.M., Frost, B.R., Chamberlain, K.R., 2001. Crustal growth by magmatic underplating: Isotopic evidence from the northern Sherman batholith. Geology 29, 515-518.
    連結:
  34. Gao, S., Liu, X.M., Yuan, H.L., Hattendorf, B., Günther, D., Chen, L., Hu, S.H., 2002. Determination of forty two major and trace elements in USGS and NIST SRM glasses by laser ablation-inductively coupled plasma-mass spectrometry. Geostandard Newsletter 26, 181-196.
    連結:
  35. Gilder, S.A., Gill, J., Coe, R.S., 1996. Isotopic and paleomagnetic constraints on the Mesozoic tectonic evolution of south China. Journal of Geophysical Research 101(B7), 16137-16154.
    連結:
  36. Golden software, Inc. Surfer version 8.
    連結:
  37. Hsieh, P.S., Chen, C-H., Yang, H.J., Lee, C.Y., 2008. Petrogenesis of the Nanling Mountains granites from South China: Constraints from systematic apatite geochemistry and whole-rock geochemical and Sr-Nd isotope compositions. Journal of Asian Earth Sciences (accepted), doi: 10.1016/j.jseaes.2008.02.002.
    連結:
  38. Hsü, K.J., Li, J., Chen, H., Wang, Q., Sun, S., Sengör, A.M.C., 1990. Tectonics of South China: Key to understanding West Pacific geology. Tectonophysics 183, 9-39.
    連結:
  39. Hsü, K.J., Sun, S., Li, J., Chen, H., Pen, H., Sengör, A.M.C., 1988. Mesozoic overthrust tectonics in south China. Geology 16, 418-421.
    連結:
  40. Jackson, S.E., Pearson, N.J., Griffin, W.L., Belousova, E.A., 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology 21, 47-69.
    連結:
  41. Jahn, B.M., 1974. Mesozoic thermal events in southeast China. Nature 248, 480-483.
    連結:
  42. Jahn, B.M., Chen, P.Y., Yen, T.P., 1976. Rb-Sr ages of granitic rocks in southeastern China and their tectonic significance. Geological Society of America Bulletin 86, 763-776.
    連結:
  43. Jahn, B.M., Zhou, X.H., Li, J.L., 1990. Formation and tectonic evolution of Southeastern China and Taiwan: Isotopic and geochemical constraints. Tectonophysics 183, 145-160.
    連結:
  44. Kotopouli, C.N., Pe-Piper, G., Piper, D.J.W., 2000. Petrology and evolution of the Hercynian Pieria granitoid Complex (Thessaly, Greece): paleogeographic and geodynamic implications. Lithos 50, 137-152.
    連結:
  45. Lan, C.Y., Chung, S.L., Long, T.V., Lo, C.H., Lee, T.Y., Mertzman, S.A., Shen, J.S., 2003. Geochemical and Sr-Nd isotopic constraints from the Kontum massif, central Vietnam on the crustal evolution of the Indochina block. Precambrian Research 122, 7-27.
    連結:
  46. Lepvrier, C., Maluski, H., Vuong, N.V., Roques, D., Axente, V., Rangin, C., 1997. Indosinian NW-trending shear zones within the Truong Son belt (Vietnam) 40Ar-39Ar Triassic ages and Cretaceous to Cenozoic overprints. Tectonophysics 283, 105-127.
    連結:
  47. Lepvrier, C., Maluski, H., Tich, V.V., Leyreloup, A., Thi, T.P., Vuong, V.N., 2004. The early Triassic Indosinian orogeny in Vietnam (Trong Son Belt and Kontum Massif): implications for the geodynamic evolution of Indochina. Tectonophysics 393, 87-118.
    連結:
  48. Li, X.H., McCulloch, M.T., 1998. Geochemical characteristics of Cretaceous mafic dikes from northern Guangdong, SE China: Age, origin and tectonic significance. In M.F.J. Flower et al. (eds.) Mantle Dynamics and Plate Interactions in East Asia. AGU Geodynamics Series 27, 405-419.
    連結:
  49. Li, X.H., Chen, Z.G., Liu, D.Y., Li, W.X., 2003. Jurassic gabbro-granite-syenite suites from Southern Jiangxi province, SE China: Age, origin, and tectonic significance. Inter. Geological Review 45, 898-921.
    連結:
  50. Li, X.H., Chung, S.L., Zhou, H.W., Lo, C.H., Liu, Y., Chen, C-H., 2004. Jurassic intraplate magmatism in southern Hunan-eastern Guangxi: 40Ar/36Ar dating, geochemistry, Sr-Nd isotopes and implications for the tectonic evolution of SE China. In: Malpas, J., Fletcher, C., Ali, J.R., (Eds.), Aspects of tectonic evolution of China. Geological Society of London Special Publication 226, pp. 193-216.
    連結:
  51. Li, X.H., Li, Z.X., Li, W.X., Liu, Y., Yuan, C., Wei, G.J., Qi, C.S., 2007. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I- and A-type granites from central Guangdong, SE China: A major igneous event in response to foundering of a subducted flat-slab? Lithos 96,186-204.
    連結:
  52. Li, Z.X., 1998. Tectonic history of the major East Asian lithospheric blocks since the mid-Proterozoic-A synthesis. Geodynamics 27, 221-243.
    連結:
  53. Li, Z.X., Li, X.H., 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology 35, 179-182.
    連結:
  54. Mahood, G., Hildreth, W., 1983. Large partition coefficients for trace elements in high-silica rhyolites. Geochimica et Cosmochimica Acta 47, 11-30.
    連結:
  55. Martin, H., Bonin, B., Capdevila, R., Jahn, B.M., Lameyre, J., Wang, Y., 1994. The Kuiqi peralkaline granitic complex (SE China): petrology and geochemistry. Journal of Petrology 35, 983-1015.
    連結:
  56. Montel, J.M., 1986. Experimental determination of the solubility of Ce-monazite in SiO2-Al2O3-K2O-Na2O melts at 800℃, 2 kbar under H2O-saturated conditions. Geology 14, 659-662.
    連結:
  57. Montel, J.M., 1993. A model for monazite/melt equilibrium and application to the generation of granitic magmas. Chemical Geology 110, 127-146.
    連結:
  58. Montel, J.M., Foret, S., Veschambre, M., Nicollet, C., Provost, A., 1996. Electron microprobe dating of monazite. Chemical Geology 131, 37-53.
    連結:
  59. Nash, W.P., 1984. Phosphate minerals in terrestrial igneous and metamorphic rocks. In: Nriagu, J.O., Moore, P.B., (Eds.), Phosphate Minerals. Springer-Verlag, Berlin.
    連結:
  60. Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology 25, 956-983.
    連結:
  61. Pearce, N.J.G., Perkins, W.T., Westgate, J.A., Gorton, M.P., Jackson, S.E., Neal, C.R., Chenery, S.P., 1997. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostandard Newsletter 21, 115-141.
    連結:
  62. Pinotti, L., Tubia, J.M., D'Eramo, F., Vegas, N., Sato, A.M., Coniglio, J., Aranguren, A., 2006. Structural interplay between plutons during the construction of a batholith (Cerro Aspero batholith, Sierras de Córdoba, Argentina). Journal of Structural Geolgoy 28, 834-849.
    連結:
  63. Pirajno, F., Bagas, L., 2002. Gold and silver metallogeny of the South China Fold Belt: a consequence of multiple mineralizing events? Ore Geology Reviews 20, 109-126.
    連結:
  64. Román-Berdiel, T., Gapais, D., Burn, J.P., 1997. Granite intrusion along strike-slip zones in experiment and nature. American Journal of Science 297, 651-678.
    連結:
  65. Sawka, W.N., Chappell, B.W., Kistler, W., 1990. Granitoid compositional zoning by side-wall boundary layer differentiation: Evidence from the Palisade Crest intrusive suite, central Sierra Nevada, California. Journal of Petrology 31, 519-553.
    連結:
  66. Sengör, A.M.C., 1979. Mid-Mesozoic closure of Permo-Triassic Tethys and its implications. Nature 279, 590-593.
    連結:
  67. Sengör, A.M.C., 1984. The Cimmeride orogenic system and the tectonics of Eurasia. Geological Society of America Special Paper 195, 82pp.
    連結:
  68. Sha, L.K., Chappell, B.W., 1999. Apatite chemical composition, determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis. Geochimica et Cosmochimica Acta 63, 3861-3881.
    連結:
  69. Streckeisen, A.L., 1976. To each plutonic rock its proper name, Earth Science Review 12, 1-33.
    連結:
  70. Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J., (Eds.), Magmatism in the Ocean Basins. Geological Society of London Special Publication 42, pp. 528-548.
    連結:
  71. Treloar, P.J., Colley, H., 1996. Variations in F and Cl contents in apatites from magnetite-apatite ores in northern Chile, and their ore-genetic implications. Mineralogical Magazine 60, 285-301.
    連結:
  72. Turner, S., Standiford, M., Foden, J., 1992. Some geodynamic and compositional constrains on “postorogenic” magmatism. Geology 20, 931-934.
    連結:
  73. Turner, S., Kelley, S., VandenBerg, A., Foden, J., Sandiford, M., Flöttmann, T., 1996. Source of the Lachlan Fold Belt flysch linked to convective removal of the lithospheric mantle and rapid exhumation of the Delamerian-Ross Fold Belt. Geology 24, 941-944.
    連結:
  74. Vigneresse, J.L., 1995. Crustal regime of deformation and ascent of granitic magma. Tectonophysics 249, 187-202.
    連結:
  75. Vigneresse, J.L., 1999. Should felsic magmas be considered as tectonic objects, just like faults or folds? Journal of Structural of Geology 21, 1125-1130.
    連結:
  76. Wang, Q., Li, J.W., Jian, P., Zhao, Z.H., Xiong, X.L., Bao, Z.W., Xu, J.F., Li, C.F., Ma, J.L., 2005. Alkaline syenites in eastern Cathaysia (South China): link to Permian-Triassic transtension. Earth and Planetary Science Letters 230, 339-354.
    連結:
  77. Wang, H., Mo, X., 1995. An outline of the tectonic evolution of China. Episodes 8, 6-16.
    連結:
  78. Wang, Y., Fan, W., Sun, M., Liang, X., Zhang, Y., Peng, T., 2007. Geochronological, geochemical and geothermal constraints on petrogenesis of the Indosinian peraluminous granites in the South China Block: A case study in the Hunan Province. Lithos 96, 475-502.
    連結:
  79. Ward, C.D., McArthur, J.M., Walsh, J.N., 1992. Rare earth element behavior during evolution and alteration of the Dartmoor granite, SE England. Journal of Petrology 33, 785-815.
    連結:
  80. Wells, M., Hoisch, T.D., 2008. The role of mantle delamination in widespread Late Cretaceous extension and magmatism in the Cordilleran orogen, western United States. Geological Society of America Bulletin 120, 515-530.
    連結:
  81. Wernicke, B., Axen, G.J., Snow, J.K., 1988. Basin and Range extensional tectonics at the latitude of Las Vegas, Nevada. Geological Society of America Bulletin 100, 1738-1757.
    連結:
  82. Williams, I.S., 1998. U–Th–Pb geochronology by ion microprobe. In: McKibben, M.A., Shanks, W.C.III., Ridley, W.I., (Eds.), Applications of Microanalytical Techniques to Understanding Mineralizing Processes, pp. 1–35. Reviews in Economic Geology 7.
    連結:
  83. Wong, W.H., 1927. Crustal movements and igneous activities in eastern China since Mesozoic time. Geological Society of China Bulletin 6, 9-37.
    連結:
  84. Wong, W.H., 1929. The Mesozoic orogenic movement in eastern China. Geological Society of China Bulletin 8, 33-44.
    連結:
  85. Xu, X.S., Lu, W.M., He, Z.Y., 2007. Age and source of Fogang batholith and Wushi diorite-amphibole gabbro. Science in China (series D), 37(1), 27-38 (in Chinese).
    連結:
  86. Xu, X.S., O’Reilly, S.Y., Griffin, W.L., Deng, P., Pearson, N.J., 2005. Relict Proterozoic basement in the Nanling Mountains (SE China) and its tectonothermal overprinting. Tectonics 24, 1-16.
    連結:
  87. Xu, X.S., O’Reilly, S.Y., Griffin, W.L., Wang, X., Pearson, N.J., He, Z., 2007. The crust of Cathaysia: Age, assembly and reworking of two terranes. Precambrian Research 158, 51-78.
    連結:
  88. Yuan H.L., Gao S., Liu X.M., Li H.M., Günther D. and Wu F.Y. (2004) Accurate U-Pb age and trace element determinations of zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostandard Newsletter: The Journal of Geostandards and Geoanalysis 28, 353-370.
    連結:
  89. Yurimoto, Y., Duke, E.F., Papike, J.J., Shearer, C.K., 1990. Are discontinuous chondrite-normalized REE patterns in pegmatitic granite systems the results of monazite fractionation? Geochimica et Cosmochimica Acta 54, 2141-2145.
    連結:
  90. Zhou, X.M., Li, W.X., 2000. Origin of Late Mesozoic igneous rocks in Southeastern China: Implication for lithosphere subduction and underplating of mafic magmas. Tectonophysics 326, 269-287.
    連結:
  91. 于津生,桂訓唐,袁超 (1999) 廣西大容山花崗岩套同位素地球化學特徵。廣西地質,第12卷,第3期,第1-6頁。
  92. 王嶽軍 (2001a) 湘東南中生代花崗閃長質小岩體的岩石地球化學特性。岩石學報,第17卷,第1期,第169-175頁。
  93. 王嶽軍 (2001b) 湘東南中生代花崗閃長岩鋯石U-Pb法定年及其成因指示。中國科學D輯,第31卷,第9期,第745-751頁。
  94. 毛景文,李紅艷,裴榮富 (1995) 湖南千里山花崗岩體的Nd-Sr同位素及岩石成因研究。礦床地質,第14卷,第3期,第235-242頁。
  95. 孔興功,陳培榮,章邦桐 (2000) 江西南部白面石-東坑盆地A型火山岩的確定及地質意義。地球化學,第29卷,第6期,第521-524頁。
  96. 包志偉,趙振華,熊小林 (2000) 廣東惡雞腦鹼性正長岩的地球化學及其地球動力學意義。地球化學,第29卷,第5期,第462-468頁。
  97. 包志偉、趙振華 (2003) 佛岡鋁質A型花崗岩的地球化學及其形成環境初探。地質地球化學,第31卷,第1期,第52-61頁。
  98. 付建民,馬昌前,謝才富,張業明,彭松柏 (2004a) 湖南九嶷山複式花崗岩體SHRIMP鋯石定年及其地質意義。大地構造與成礦學,第28卷,第4期,第370-378頁。
  99. 付建民,馬昌前,謝才富,張業明,彭松柏 (2004b) 湘南西山鋁質A型花崗質火山-侵入雜岩的地球化學及其形成環境。地球科學與環境學報,第26卷,第4期,第15-23頁。
  100. 付建民,馬昌前,謝才富,張業明,彭松柏 (2004c) 湖南騎田嶺岩體東緣菜嶺岩體的鋯石SHRIMP定年及其意義。中國地質,第31卷,第1期,第96-100頁。
  101. 付建民,馬昌前,謝才富,張業明,彭松柏 (2005) 湘南金雞嶺鋁質A型花崗岩的厘定及構造環境分析。地球化學,第34卷,第3期,第215-226頁。
  102. 付建民,謝才富,彭松柏,楊曉君,梅玉萍 (2006) 湖南騎田嶺花崗岩及其暗色微粒包體的地球化學與殼幔岩漿的混合作用。地球學報,第27卷,第6期,第557-5696頁。
  103. 江西省地質礦產局 (1984) 江西省區域地質誌。北京:地質出版社,920頁。
  104. 任紀舜,陳廷愚,牛寶貴,劉志剛,劉鳳仁 (1990) 中國東部及鄰區大陸岩石圈的構造演化及成礦。科學出版社,205頁。
  105. 任紀舜,王作勛,陳炳蔚,姜春發,牛寶貴,李錦軼,謝廣連,和政軍,劉志剛 (1999) 中國及嶺區大地構造圖(1/500萬)及簡要說明書-從全球看中國大地構造。北京:地質出版社,205頁。
  106. 地質礦產部南嶺項目花崗岩專題組 (1989) 南嶺花崗岩地質及其成因與成礦作用。北京:地質出版社,471頁。
  107. 朱金初,李向東,沈渭洲 (1989) 廣西花山花崗岩體成因的鍶、銣、氧同位素研究。地質學報,第3卷,第225-235頁。
  108. 朱金初,黃革非,張佩華,李福春,饒冰 (2003) 湖南騎田嶺岩體菜嶺超單元花崗岩侵位年齡和物質來源研究。地質論評,第49卷,第3期,第245-252頁。
  109. 朱金初,謝才富,張佩華,楊策,顧晟彥 (2005) 廣西東部北牛廟閃長岩和同安石英二長岩:岩石學、鋯石SHRIMP U-PB年代學和地球化學。岩石學報,第21卷,第3期,第665-676頁。
  110. 朱金初,張佩華,謝才富,張輝,楊策 (2006) 南嶺西段花山-姑婆山侵入岩帶鋯石U-Pb年齡架格及其地質意義。岩石學報,第22卷,第9期,第2270-2278頁。
  111. 沈渭洲,徐士進,王銀喜,楊傑東 (1994) 西華山花崗岩的Nd-Sr同位素研究。科學通報,第39卷,第2期,第154-156頁。
  112. 沈渭洲、淩洪飛 (2002) 中國東南部基底變質岩、花崗岩和火山岩的同位素研究與地殼演化。王德滋,周新民編 中國東南部晚中生代花崗質火山-侵入雜岩成因與地殼演化。北京:地質出版社,第230-272頁。
  113. 沈渭洲,淩洪飛,孫濤 (2007) 華南晚中生代花崗岩-火山岩Sr-Nd同位素地球化學。周新民編 南嶺地區晚中生代花崗岩成因與岩石圈動力學演化。北京:科學出版社,第123-160頁。
  114. 李寄嵎,蔡榮浩,何孝恆,楊燦堯,鍾孫霖,陳正宏 (1997) 應用X光螢光分析儀從事岩石樣品之定量分析(I)主要元素。中國地質學會86年年會暨學術研討會論文摘要,第418-420頁。
  115. 李華芹,路遠發,王登紅,陳毓川,楊紅梅,郭敬,謝才富,梅玉萍,馬麗艷 (2006) 湖南騎田嶺芙蓉礦田成岩成礦時代的釐定及其地質意義。地質論評,第52卷,第1期,第113-121頁。
  116. 李獻華,趙振華,桂訓唐,於津生 (1991) 華南前寒武紀地殼形成時代的Sm-Nd和鋯石U-Pb同為素制約。地球化學,第3卷,第255-264頁。
  117. 林蔚 (2001) 華南沿海地區晚燕山期侵入岩漿活動及岩石圈演化。台灣大學地質科學研究所博士論文,234頁。
  118. 邱檢生,胡建 (2007) 南嶺地區晚中生代南帶花崗岩研究-龍窩-白石崗岩體。周新民編 南嶺地區晚中生代花崗岩成因與岩石圈動力學演化。北京:科學出版社,第325-365頁。
  119. 邱瑞照,鄧晉福,蔡志勇,周肅,常海亮,杜紹華 (2003) 湖南香花嶺430花崗岩體Nd同位素特徵及岩石成因。岩石礦物學雜誌,第22卷,第1期,第41-46頁。
  120. 周玲棣,趙振華,周國富 (1996) 我國一些鹼性岩的同位素年代學研究。地球化學,第25卷,第2期,第164-171頁。
  121. 姚軍民,華仁民,林錦富 (2005) 湘東南黃沙坪花崗岩LA-ICPMS鋯石U-Pb定年及岩石地球化學特徵。岩石學報,第21卷,第3期,第688-696頁。
  122. 徐夕生,魯為敏,賀振宇 (2007) 佛岡花崗岩基及烏石閃長岩-角閃輝長岩體的形成年齡和起源。中國科學D輯,第37卷,第1期,第27-38頁。
  123. 翁文灝 (1926) 中國東部中生代之造山運動。第三次太平洋科學會議摘要。
  124. 淩洪飛,沈渭洲,孫濤,蔣少湧,薑耀輝,倪培,高劍峰,黃國龍,葉海敏,潭正中 (2006) 廣東省22個燕山期花崗岩的源區特徵及成因:元素及Nd-Sr同位素研究。岩石學報,第22卷,第11期,第2687-2703頁。
  125. 孫濤,周新民,陳培榮,李惠民,周紅英,王志成,沈渭洲 (2003) 南嶺東段中生代強過鋁花崗岩成因及其大地構造意義。第33卷,第12期,第1209-1218頁。
  126. 孫濤 (2006) 新編華南花崗岩分佈圖及其說明。地質通報,第25卷,第3期,第332-335頁。
  127. 袁宗信,張宗清 (1992) 南嶺花崗岩類岩石Sm, Nd同位素特徵及岩石成因探討。地質論評,第36卷,第1期,第1-15頁。
  128. 崔盛芹,李錦蓉,吳珍漢,易明初,沈淑敏,尹華仁,馬寅生 (2002) 燕山地區中新生代陸內造山作用。北京:地質出版社,386頁。
  129. 范春方、陳培榮 (2000a) 贛南陂頭A型花崗岩的地質地球化學特徵及其形成的構造意義。地球化學,第29卷,第4期,第358-366頁。
  130. 范春方、陳培榮 (2000b) 贛南陂頭花崗岩體Nd-Sr同位素特徵及其意義。地質找礦論叢,第15卷,第3期,第282-287頁。
  131. 章邦桐,戴永善,王駒,柏仇勇,劉洪磊 (2001) 南嶺西段金雞嶺複式花崗岩基地質及岩漿動力學特徵。高校地質學報,第7卷,第1期,第50-61頁。
  132. 張德全,王雪英,孫桂英 (1985) 關於廣西姑婆山-?堛Q岩體的定(侵)位年齡和冷凝歷史的探討。地質論評,第31卷,第3期,第232-239頁。
  133. 張敏,陳培榮,張文蘭,陳衛鋒,李惠民,張孟群 (2003) 南嶺中段大東山花崗岩體的地球化學特徵和成因。地球化學,第32卷,第6期,第529-539頁。
  134. 張敏,陳培榮,黃國龍,潭正中,淩洪飛,陳衛鋒 (2006) 南嶺東段龍源垻複式岩體LA-ICP-MS鋯石U-Pb年齡及其地質意義。地質學報,第80卷,第7期,第984-994頁。
  135. 張紹立,王聯魁,朱為方,楊文金 (1985) 用磷灰石中稀土元素判別花崗岩成岩成礦系列。地球化學,第1卷,第45-57頁。
  136. 張文蘭,華仁民,王汝成,陳培榮,李惠民 (2006) 贛南大吉山花崗岩成岩與鎢礦成岩年齡的研究。地質學報,第80卷,第7期,第956-962頁。
  137. 湖南省地質礦產局 (1988) 湖南省區域地質誌。北京:地質出版社,719頁。
  138. 黃汲清 (1945) 中國主要地質構造單元。北京:地質出版社,162頁。
  139. 黃汲清 (1960) 中國地質構造基本特徵的初步總結。地質學報,第40卷,第1期,第1-37頁。
  140. 舒良樹,盧華复,賈東,Charver, J., Faure, M. (1999) 華南武夷山早古生代構造事件的40Ar/39Ar同位素年代研究。南京大學學報,第35卷,第6期,第668-674頁。
  141. 舒良樹 (2007) 南嶺地區地質背景。周新民編 南嶺地區晚中生代花崗岩成因與岩石圈動力學演化。北京:科學出版社,第3-22頁。
  142. 楊策,朱金初,張佩華,謝才富 (2006) 廣西姑婆山?堛Q花崗岩中閃長質包體的地球化學特徵及其成因探討。高校地質學報,第12卷,第3期,第310-318頁。
  143. 趙子傑,馬大銓,林惠昆 (1987) 廣東龍窩佛崗花崗岩類岩體地球化學特徵及其形成地質背景。南嶺地質礦產科研報告集(第一輯)。武漢:武漢地質學院出版社,第28-68頁。
  144. 趙振華,包志偉,張伯友,熊小林 (2000) 柿竹園超大型鎢多金屬礦床形成的殼幔相互作用背景。中國科學D輯,第30卷(增刊),第161-168頁。
  145. 鄧希光,陳志剛,李獻華,劉敦一 (2004) 廣西東部南地區大容山-十萬大山花崗岩帶SHRIMP鋯石U-Pb定年。地質論評,第50卷,第4期,第426-432頁。
  146. 董樹文,張嶽橋,龍長興,楊振宇,季強,王濤,胡建民,陳宣華 (2007) 中國侏羅紀構造變革與燕山運動新詮釋。地質學報,第81卷,第11期,第1449-1461頁。
  147. 劉昌實,陳小明,王汝成,胡歡,張文蘭,賴鳴遠 (2002) 廣東從化石嶺方鈉石正長岩礦物學特徵及成因。礦物學報,第22卷,第3期,第261-269頁。
  148. 劉昌實,陳小明,王汝成,張愛媛,胡歡 (2005) 下地殼部分熔融的產物:燕山早期廣東臘圃花崗岩成因。高校地質學報,第11卷,第3期,第343-357頁。
  149. 劉昌實,陳小明,王汝成,胡歡,張愛媛 (2007) 南嶺地區晚中生代南帶花崗岩研究-南昆山-臘圃岩體。周新民編 南嶺地區晚中生代花崗岩成因與岩石圈動力學演化。北京:科學出版社,第255-294頁。
  150. 劉義茂,戴橦謨,盧煥章,胥友志,王昌烈,康衛清 (1997) 千里山花崗岩成岩成礦的40Ar-39Ar和Sm-Nd同位素年齡。中國科學D輯,第27卷,第5期,第425-430頁。
  151. 劉穎,劉海臣,李獻華 (1996) 用ICP-MS準確測定岩石樣品中的40餘種微量元素。地球化學,第25卷,第6期,第552-558頁。
  152. 廣西省地質礦產局 (1985) 廣西壯族自治區地質誌。北京:地質出版社,853頁。
  153. 廣東省地質礦產局 (1988) 廣東省區域地質誌。北京:地質出版社,941頁。
  154. 陳正宏,李寄嵎,謝佩珊,曾雯,周漢文 (2008) 利用EMP獨居石定年法探討浙閩武夷山地區變質基底岩石與花崗岩的年齡。高校地質學報,第14卷,第1期,第1-15頁。
  155. 陳培榮,章邦桐,孔興功,蔡筆聰,淩洪飛,倪琦生 (1998) 贛南寨背A型花崗岩體的地球化學特徵及其構造地質意義。岩石學報,第14卷,第3期,第289-298頁。
  156. 陳培榮,孔興功,王銀喜,倪琦生,章邦桐,淩洪飛 (1999) 贛南燕山早期雙峰式火山-侵入雜岩的Rb-Sr同位素定年及意義。高校地質學報,第5卷,第4期,第378-383頁。
  157. 陳小明,王汝成,劉昌實,胡歡,張文藍,高劍峰 (2002) 廣東從化佛岡主體黑雲母花崗岩定年和成因。高校地質學報,第8卷,第3期,第239-307頁。
  158. 陳毓川,常印佛,裴榮富,任紀舜,湯中立,翟裕生 (2007) 中國成礦體系與區域成礦評估。北京:地質出版社,962頁。
  159. 陳志剛、李獻華、李武顯 (2002) 全南正長岩的地球化學特徵及成因。地質論評,第48卷 (增刊),77-83頁。
  160. 謝家榮 (1936) 北京西山地質構造概況。中國地質學會會誌,第15卷,第61-74頁。
  161. 顧晟彥,華仁民,戚華文 (2006) 廣西姑婆山花崗岩單顆立鋯石LA-ICP-MS U-Pb定年及全岩Sr-Nd同位素研究。地質學報,第80卷,第4期,第543-553頁。
  162. Chung, S.L., Lo, C.H, Lee, T.Y., Zhang, Y., Xie, X., Li, X., Wang, K.L., Wang, P.L., 1998. Diachronous uplift of the Tibetan plateau staring 40 Myr ago. Nature 394, 723-725.
  163. Compston W., Williams I.S., Kirschvink J.L., Zhang Z. and Ma G.. (1992) Zircon U-Pb ages for the Early Cambrian time-scale. Journal of the Geological Society, London 149, 171-184.
  164. Deprat, J., 1914. Études des plissements et des zones décrasement de la moyenne et de la basse Rivière Noire. Mémoire du Service Géologique Indochine 3, 59pp.
  165. Fromaget, J., 1927. Études géologiques sur le Nord de l’Indochine centrale. Bulletin du Service Geologique de L’Indochine 16, 368.
  166. Fromaget, J., 1932. Sur la structure des Indosinides. Comptes Rendus de l’Académie des Sciences 195, 538pp.
  167. Fromaget, J., 1941. L'Indochine Française, sa structure geologique, ses roches, ses mines et leurs relations possibles avec la tectonique. Bulletin du Service Geologique de L’Indochine 26, 140.
  168. Ishihara, S., 1977. The magnetite-series and ilmenite-series granitic rocks. Mining Geology 27, 293-305.
  169. Loiselle, M.C., Wones, D.R., 1979. Characteristics and origin of anorogenic granites. Geological Society of America Abstracts 11, 468.
  170. Ludwig K.R. (2003) ISOPLOT 3: A geochronological toolkit for Microsoft excel. Berkeley Geochronology Centre Special Publication, 4, 74pp.
  171. Metcalfe, I., 1999. Gondwana dispersion and Asian accretion: An overview. In: Metcalfe, I., (Ed.), Gondwana dispersion and Asian accretion: IGCP 321 final results volume, Balkema, Rotterdam, The Netherlands, pp. 9-28.
  172. Mordberg, L.E., Antonov, A.V., Petrov, O.V., Klindukhov, V.P., Kapitonov, I.N., Malich, K.N., Petrov, E.O., Sergeev, S.A., 2006. REE distribution as a tool for understanding origin of the Norilsk-1 differentiated ore intrusion. Geophysical Research Abstracts 8, 07349.
  173. Pitcher, W. S., 1997: The nature and origin of granite. London: Chapman & Hall, 416 pp.
  174. Sengör, A.M.C., Hsü, K.J., 1984. The Cimmerides of eastern Asia: history of the Eastern end of the Palaeo-Tethys. Mémoirs Géologique de France 147, 139-167.
  175. Sewell, R.J., Chan, L.S., Fletcher, C.J.N., Brewer, T.S., Zhu, J.C., 2000. Isotope zonation in basement crustal blocks of southeastern China: Evidence for multiple terrane amalgamation. Episodes 23, 257-261.
  176. Shen W. Z., and Lin H. F. (2002) Isotope studies of basement metamorphic, granitic and volcanic rocks in SE China and its crust evolution. In Genesis of Late Mesozoic Granitic Volcanic-plutonic Complexes in SE China and Crustal Evolution (eds.Wang, D. and Zhou, X.). Science Press, Beijing, pp. 230-272 (in Chinese).
  177. Zhou, X.M., Sun, T., Shen, W.Z., Shu, L.S., Niu, Y.L., 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. Episode 29, 26-33.