Translated Titles

Study of Resolution and SNR on Cr4+:YAG Based Optical Coherence Tomography





Key Words

光學低同調掃描 ; 解析度 ; 訊雜比 ; optical coherence tomography, resolution ; SNR



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract

在以單一光偵測器為量測系統的光學低同調掃描架構中,縱向解析度受光源的中心波長與頻寬所影響,而訊雜比受光源的不穩度所影響。本實驗室所原創之摻鉻雙纖衣晶體光纖,不但具有高頻寬,且為高穩定度的連續光源,因此可用以研製高縱向解析度與高訊雜比之近紅外光學低同調斷層掃描儀(OCT)。 藉由雷射加熱基座生長法,我們已生長出雙纖衣結構的摻鉻釔鋁石榴石光纖,當此光纖以波長為1064 nm的摻鐿光纖雷射作為幫浦光時,可產生中心波長為1.38 um、頻寬為240 nm、不穩度為0.03%的自發輻射光源。我們將其應用於OCT系統中,已可成功檢測出單層肺癌細胞層的干涉訊號,實驗結果顯示肺癌細胞厚度約為6 um。另外,經由色散補償的實驗與模擬,我們已使系統的縱向解析度從5.1 um提升至3.75 um,同時系統的訊雜比為68.3 dB。 此外,我們修正文獻中OCT訊雜比模型而建立適用於各光源的OCT訊雜比模擬模型,根據模擬結果,我們認為無法透過調變參考光強度而達到散粒雜訊(shot noise)極限,同時我們也於調變參考光強度的實驗結果中證明此預測。最後,根據振幅雜訊影響訊雜比的模擬結果,我們認為以單一光偵測器為量測系統的OCT架構中,Cr:YAG光源的訊雜比應已非常接近於此架構的最佳值。

English Abstract

For optical coherence tomography (OCT), axial resolution is determined by center wavelength and bandwidth of the light source, whereas signal-to-noise ratio (SNR) is affected by instability of the light source. Our proprietary Cr4+:YAG double-clad fiber is not only broad in bandwidth but also highly stable; therefore, it is eminently suitable for the development of high axial resolution and high SNR near infrared OCT systems. By means of laser heated pedestal growth (LHPG) method, we have successfully developed a Cr4+:YAG double-clad fiber, generating broadband amplified spontaneous emission (ASE) centered at 1.38 um with a bandwidth of 265 nm and 0.03% instability by an 1064-nm Yb fiber pump laser. Using the ASE as light source of the OCT system, we have demonstrated an interference signal of 6-um-thick single-layer human pulmonary adenocarcinoma cells. With dispersion compensation, we have promoted the axial resolution from 5.1 um to 3.75 um with 68.3-dB SNR simultaneously. We have constructed a modified SNR simulation model, which can be applied to any kinds of OCT light sources. Based on experiment and simulation results, we conclude that it is not likely that shot-noise limited system can be reached through adjusting the reflectivity of the reference light. Besides, since our light source is quite stable, we also conclude that our SNR performance is close to theoretical limit in a single-detector system.

Topic Category 電機資訊學院 > 光電工程學研究所
工程學 > 電機工程
  1. [1] M. G. Pomper, “Molecular imaging: an overview,” Acad. Radiol., 8, 1141 (2001).
  2. [2] K. Takada, I. Yokohama, K. Chida, and J. Noda, “New measurement system for fault location in optical waveguide devices based on an interferometric technique,” Appl. Opt., 26, 1603 (1987).
  3. [3] B. Danielson and C. Whittenberg, “Guided-wave with micrometer resolution,” Appl. Opt., 26, 2836 (1987).
  4. [4] D. Engin, “Complex optical low coherence reflectometry with tunable source,” IEEE Photon. Technol. Lett., 16, 1346 (2004).
  5. [5] D. Anderson and F. Bell, “Optical time-domain reflectometry,” Tektronix Inc., Wilsonville (1997).
  6. [7] A. M. Rollins, M. V. Sivak, S. Radhakrishnan, J. H. Lass, D. Huang, K. D. Cooper, and J. A. Izatt, “Emerging clinical applications of optical coherence tomography,” Opt. Photon. News, 13, 36 (2002).
  7. [9] J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Am. Acad. Dermatol., 37, 958 (1997).
  8. [10] P. Flournoy, R. McClure, and G. Wyntjes, “White-light interferometric thickness gauge,” Appl. Opt., 11, 1907 (1972).
  9. [12] Y. S. Lin, C. C. Lai, K. Y. Huang, J. C. Chen, C. Y. Lo, S. L. Huang, T. Y. Chang, J. Y. Ji, and P. Shen, “Nanostructure formation of double-clad Cr4+:YAG crystal fiber grown by co-drawing laser-heated pedestal,” J. Cryst. Growth, 289, 515 (2006).
  10. [14] R. D. Guenther, “Modern Optics,” John Wiley & Sons (1990).
  11. [15] G. Vasilescu, “Electronic noise and interfering signals,” Springer-Verlag (2005).
  12. [17] A. M. Rollins and J. A. Izatt, “Optimal interferometer designs for optical coherence tomography,” Opt. Lett., 24, 1484 (1999).
  13. [18] M. Gupta, “Thermal noise in nonlinear resistive devices and its circuit representation,” Proc. IEEE, 70, 788 (1982).
  14. [19] M. B. Gray, D. A. Shaddock, C. C. Harb, and H. A. Bachor, “Photodetector designs for low-noise, broadband, and high-power applications,” Rev. Sci. Instrum., 69, 3755 (1998).
  15. [20] M. Aoyama and K. Yamakawa, “Noise characterization of an all-solid-state mirror-dispersion-controlled 10-fs Ti:sapphire laser,” Opt. Commun., 140, 255 (1997).
  16. [21] B. Bouma and G. Tearney, “Handbook of optical coherence tomography,” Marcel Dekker (2002).
  17. [22] S. Kuck, “Laser-related spectroscopy of ion-doped crystals for tunable solid-state lasers,” Appl. Phys. B, 72, 515 (2001).
  18. [23] Y. Kalisky, “Cr4+-doped crystals: their use as lasers and passive Q-switches,” Prog. Quantum Electron., 28, 249 (2004).
  19. [24] A. Suda, A. Kadoi, K. Nagasaka, H. Tashiro, and K. Midorikawa, “Absorption and oscillation characteristics of a pulsed Cr4+:YAG laser investigated by a double-pulse pumping technique,” IEEE J. Quantum Electron., 35, 1548 (1999).
  20. [25] H. Eilers, W. Dennis, W. Yen, S. Kuck, K. Peterman, G. Huber, and W. Jia, “Performance of a Cr:YAG laser,” IEEE J. Quantum Electron., 29, 2508 (1993).
  21. [26] G. Boulon, L. Laversenne, C. Goutaudier, Y. Guyot, and M. Cohenadad, “Radiative and non-radiative energy transfers in Yb3+-doped sesquioxide and garnet laser crystals from a combinatorial approach based on gradient concentration fibers,” J. Lumin., 102-103, 417 (2003).
  22. [27] J. Haggerty, “Production of fibers by a floating zone fiber drawing technique,” NASA Contract Rep., NASA-CR-120948 (1972).
  23. [28] C. A. Burrus and J. Stone, “Single-crystal fiber optical devices: A Nd:YAG fiber laser,” Appl. Phys. Lett., 26, 318 (1975).
  24. [29] W. Jia, H. Yuan, L. Lu, H. Liu, and W. Yen, “Crystal growth and characterization of Eu2+, Dy3+:SrAl2O4 and Eu2+, Nd3+:CaAl2O4 by the LHPG method,” J. Cryst. Growth, 200, 179 (1999).
  25. [30] R. Guo, A. Bhalla, and L. Cross, “Ba1/3(Mg1/3Ta2/3)O3 single crystal fiber grown by the laser-heated pedestal growth technique,” J. Appl. Phys., 75, 4704 (1994).
  26. [31] A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Numerical dispersion compensation for partial coherence interferometry and optical coherence tomography,” Opt. Express, 9, 610 (2001).
  27. [32] A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys., 66, 239 (2003).
  28. [6] D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science, 254, 1178 (1991).
  29. [8] M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol., 113, 325 (1995).
  30. [11] C. Y. Lo, K. Y. Huang, J. C. Chen, C. Y. Chuang, C. C. Lai, S. L. Huang, Y. S. Lin, and P. S. Yeh, “Double-clad Cr4+:YAG crystal fiber amplifier,” Opt. Lett., 30, 129 (2005).
  31. [13] M. V. Klein, “Optics,” Wiley (1970).
  32. [16] A. Ziel, “Noise: sources, characterization, measurements,” Prentice-Hall (1970).
Times Cited
  1. 邱宇光(2017)。供活體大鼠眼睛特性分析之全域式光學同調斷層掃描研究。臺灣大學光電工程學研究所學位論文。2017。1-90。 
  2. 陳庭皓(2010)。掺鈰釔鋁石榴石晶體光纖應用於極化靈敏光學同調斷層掃描術之研究。臺灣大學光電工程學研究所學位論文。2010。1-91。 
  3. 廖奕涵(2010)。單模寬頻晶體光纖光源之製備與量測。臺灣大學光電工程學研究所學位論文。2010。1-103。 
  4. 鄭乃嘉(2010)。結合光學同調斷層掃描與共焦螢光顯微術之研究。臺灣大學光電工程學研究所學位論文。2010。1-69。 
  5. 許博凱(2010)。摻鉻釔鋁石榴石光源之高解析度光學同調斷層掃描系統。臺灣大學光電工程學研究所學位論文。2010。1-76。