Title

電濕潤微稜鏡透鏡應用於2D/3D影像切換之設計

Translated Titles

2D/3D Switchable Autostereoscopic Display with Electrowetting Microprism Lenses

DOI

10.6342/NTU.2010.03504

Authors

張軒維

Key Words

電濕潤 ; 電濕潤微稜鏡 ; 裸眼式3D立體顯示器 ; 2D/3D切換 ; 交互干擾 ; 觀看區域 ; 柱狀透鏡 ; electrowetting ; electrowetting microprisms ; Autostereoscopic 3D Display ; 2D/3D switchable ; crosstalk ; viewing zone ; lenticular

PublicationName

臺灣大學光電工程學研究所學位論文

Volume or Term/Year and Month of Publication

2010年

Academic Degree Category

碩士

Advisor

林晃巖

Content Language

繁體中文

Chinese Abstract

本篇論文主要在探討將電濕潤技術所構成的光學元件應用於裸眼式3D立體顯示技術,以解決採取其他技術作2D與3D影像切換時,所造成嚴重的3D影像交互干擾以及不切實際的觀看距離。 本研究中採用的光學元件是由電濕潤微稜鏡所組成的非成像透鏡,我們稱它為電濕潤微稜鏡透鏡。由於電濕潤微稜鏡透鏡為一個可調變焦距的光學元件,故在2D與3D影像切換的技術上,我們將電濕潤微稜鏡透鏡與液晶透鏡作比較。我們使用光學軟體LightTools 進行光線追跡模擬。由模擬結果得知,使用電濕潤微稜鏡透鏡所得的3D交互干擾影響比文獻上使用液晶透鏡的結果降低了76%之多,且由於兩種可調透鏡之最短焦距的差異,使得電濕潤微稜鏡透鏡法之觀看距離與顯示器厚度也遠較液晶透鏡的結果來得接近實際應用需求。 另一方面,我們亦將可自由在2D與3D影像切換的電濕潤微稜鏡透鏡與僅能呈現3D影像的柱狀透鏡,針對不同的透鏡焦距與包含不同視角影像數的畫素,進行3D觀看品質上的比較,並實際模擬出包含不同視角影像數的畫素所對應之顯示器規格,期望能提供研究裸眼式3D顯示技術相關領域的學者在設計上的依據。

English Abstract

In recent years, 2D/3D switchable autostereoscopic displays by using LC lens are attracting much attention. However, the viewing distance, crosstalk, and the thickness of the display are not good enough or even impractical. In order to solve that problem, we have developed the electrowetting microprism (EMP) lens method for 2D/3D switchable autostereoscopic display. We constructed a simulation model of EMP lens by utilizing ray tracing method based on the optical software LightTools. The computation results demonstrate that the crosstalk can be reduced to 14% for a nine-view system as compared with the similar system employed LC lens of which the crosstalk was 90%. Because the minimal focal length of EMP lens is much smaller than that of LC lens system, such that the 3D viewing distance and the display thickness of EMP lens are more practical than that of LC lens system. On the other hand, we compare the 3D viewing quality with the 2D/3D switchable EMP lens and the pure 3D image lenticular lens by varying the view number and the focal length. Finally, we define the 3D display size for different view numbers from the simulation results.

Topic Category 電機資訊學院 > 光電工程學研究所
工程學 > 電機工程
Reference
  1. 2. Ho, C.M.“Fluidics-the link between micro and nano sciences and technologies”,IEEE ,Micro Electro Mechanical Systems, 2001.
    連結:
  2. 3. Cho, S., H. Moon, and C. Kim,“Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits”. Journal of Microelectromechanical Systems, 2003. 12(1): pp. 70-80.
    連結:
  3. 4. Zhan, G., Lo, T., Liu, L., Tsien, P.,“A silicon membrane micropump with integrated bimetallic actuator”. Chinese journal of electronics, 1996. 5(2): pp. 29-35.
    連結:
  4. 5. Zengerie, R., S. Kluge, and R. Richter,“A bidirectional silicon micropump”. Sensors and Actuators, 1995. 50: pp. 81-86.
    連結:
  5. 9. Lao, Y., Sun, B., Zhou, K., Heikenfeld, J.,“Ultra-high transmission electrowetting displays enabled by integrated reflectors”. Journal of Display Technology, 2008. 4(2): pp. 120-122.
    連結:
  6. 12. 程治,“3D立體顯示應用產品的現況與未來發展”。2009年4月26日。
    連結:
  7. 14. 沈拓江,“多電極液晶透鏡(MeDLC lens)應用在 2D/3D轉換影像之設計”。碩士論文,國立交通大學光電所,2009。
    連結:
  8. 15. 黃國忠、蔡朝旭,“3D立體顯示器的春秋時代”。光電工程,2000. 71: pp. 29 ~ 37。
    連結:
  9. 16. “Real Time Stereoscopic Streaming”. from http://gruaz.net/?page_id=116&page=4.
    連結:
  10. 17. Huang, Y.-C., C.-W. Chen, and Y.-P. Huang,“Low Crosstalk Autostereoscopic 3D display with Multi-Electrode Driving Liquid Crystal Lens”. Optics and Photonics in Taiwan 2009.
    連結:
  11. 18. Lee, J. and C. Kim,“Surface-tension-driven microactuation based on continuouselectrowetting”. Journal of Microelectromechanical Systems, 2000. 9(2): pp. 171-180.
    連結:
  12. 20. Suchocki, J.,“Conceptual chemistry: understanding our world of atoms and molecules”. Journal of Chemical Education, 2003. 80(7).
    連結:
  13. 22. Fowkes, F.,“ Advances in Chemistry Series 43. Am. Chem”. Soc, Washington, 1964: p. 99.
    連結:
  14. 25. Restolho, J., J. Mata, and B. Saramago,“Electrowetting of Ionic Liquids: Contact Angle Saturation and Irreversibility”. Journal of the American Chemical Society, 2006. 128(9): pp. 3098-3101.
    連結:
  15. 26. Frieder, M. and B. Jean-Christophe,“Electrowetting: from basics to applications”. Journal of Physics: Condensed Matter, 2005. 17(28).
    連結:
  16. 30. Kuiper; Stein ,Feenstra; Bokke Johannes ,“Variable lens”, Koninklijke Philips Electronics N.Y. , Eindhoven (NL). 2007, U.S. Patents No.7245439.
    連結:
  17. 34. Smith, N., Hou, L., Zhang, J. and Heikenfeld, J.,“Fabrication and Demonstration of Electrowetting Liquid Lens Arrays”. J. Display Technol, 2009. 5: pp. 411-413.
    連結:
  18. 35. Hou, L. Zhang, J., Smith, N., Yang, J. and Heikenfeld, J.,“A full description of a scalable microfabrication process for arrayed electrowetting microprisms”.Journal of Micromechanics and Microengineering, 2010. 20(1): pp. 015044.
    連結:
  19. 36. Salmimaa, M. and T. Jarvenpaa,“3 D crosstalk and luminance uniformity from angular luminance profiles of multiview autostereoscopic 3 D displays”. Journal of the Society for Information Display, 2008. 16: p. 1033.
    連結:
  20. 38. Sluijter, M., Herzog, A., de Boer, D., Krijn, M., Urbach, H.,“ Ray-tracing simulations of liquid-crystal gradient-index lenses for three-dimensional displays”. Journal of the Optical Society of America B, 2009. 26(11): pp. 2035-2043.
    連結:
  21. 39. Huang, Y., Chen, C., Shen, T., Huang, J.,“ Autostereoscopic 3D display with scanning Multi-Electrode driven liquid crystal (MeD-LC) Lens”. 3D Research, 2010. 1(1): pp. 39-42.
    連結:
  22. 1. 陳明宏、曾繁根,“數位化微流體操縱技術”,科學發展,2006。
  23. 6. Manz, A. and H. Becker,“Microsystem technology in chemistry and life sciences”. Topics in Current Chemistry, 1999. 194, Springer Verlag.
  24. 7. Feenstra, J. and H.Rod,“electrowetting display”. from http://www.liquavista.com/technology, 2009.5.
  25. 8. Lippmann, G.,“Relations entre les phenomenes electriques et capillaires. Ann. Chim”. Phys, 1875. 5(11): pp. 494~549.
  26. 10. Hendriks, B. and S. Kuiper,“Optical element for correcting refractive index related abberations”. 2009, U.S. Patents No.7545575.
  27. 11. 黃乙白,“3D顯示器關鍵材料與元件技術”。3D顯示器技術與應用研討會,2010年4月1日。
  28. 13. 蔡朝旭,“立體顯示技術的過去、現在與未來”。 2002年10月14日。
  29. 19. Adamson, A. and A. Gast,“Physical chemistry of surfaces”. 5th ed,1990: Wiley ,New York.
  30. 21. Jaycock, M. and G. Parfitt, “Chemistry of interfaces”. 1981: E. Horwood.
  31. 23. Berge, B.,“Electrocapillarity and wetting of insulator films by water”. Comptes Rendus del' Academie des Sciences Serie II, 1993. 317: pp. 157-163.
  32. 24. Quinn, A., R. Sedev, and J. Ralston,“Contact angle saturation in electrowetting”. Journal of Physical Chemistry B-Condensed Phase, 2005. 109(13): pp. 6268-6275.
  33. 27. Bokke Johannes Feenstra, Stein Kuiper, Sjoerd Stallinga, Bernardus Hendrikus Wilhelmus Hendriks, Rudolph Maria Snoeren,“Variable focus lens”, Koninklijke Philips Electronics N. V., Eindhoven (NL). 2006, U.S. Patents No.7126903.
  34. 28. Hendriks; Bernardus Hendrikus Wilhelmus, Kuiper; Stein,“Adjustable mirror”, Koninklijke Philips Electronics N.Y. , Eindhoven (NL). 2008, U.S. Patents No.7385755.
  35. 29. Feenstra; Bokke Johannes, Hayes; Robert Andrew , Snoeren; Rudolph Maria , Kuiper; Stein , Hendriks; Bernardus Hendrikus Wilhelmus , Van Arendonk; Anton Petrus Maria ,“Switchable optical element”, Koninklijke Philips Electronics N.Y. , Eindhoven (NL). 2009, U.S. Patents No.7508566.
  36. 31. Prins; Menno Willem Jose ,Cornelissen; Hugo Johan ,“Display device based on frustrated total internal reflection”,Koninklijke Philips Electronics N.V. (Eindhoven, NL). 2005, U.S. Patents No.6961167.
  37. 32. Hendriks; Bernardus Hendrikus Wilhelmus ,Schleipen; Johannes Joseph Hubertina Barbara ,Kuiper; Stein, “Reduction of driving voltage in a switchable element”, Koninklijke Philips Electronics N.Y. , Eindhoven (NL). 2007, U.S. Patents No.7251392.
  38. 33. Menno Willem Jose Prins; Edward Willem Albert Young; Jeroen Van Velzen; Brian Kenneth Herbert;“X-ray apparatus including a filter provided with filter elements having an adjustable absorption”, Koninklijke Philips Electronics N.V., Eindhoven (NL). 2002, U.S. Patents No.6430265.
  39. 37. Chiu, C.H., Chih, C.W., Chih, S.H., Wei, H.M.,“Switchable 3D/2D Display using LC GRIN Lenticular Lens”.International Display Workshops, 2009: p. 2029-2032.