Title

生醫材料三鈣矽酸鹽之合成及結構鑑定

Translated Titles

Synthesis and structural elucidation of tricalcium silicate biomaterials

DOI

10.6342/NTU.2012.03305

Authors

莊雅茜

Key Words

生醫陶瓷材料 ; 水泥 ; 三鈣矽酸鹽 ; 沉澱法 ; 助熔劑 ; 固態核磁共振 ; Bioceramic materials ; cement ; tricalcium silicate ; coprecipitation ; fluxing agent ; NMR spectroscopy

PublicationName

臺灣大學化學研究所學位論文

Volume or Term/Year and Month of Publication

2012年

Academic Degree Category

碩士

Advisor

陳振中

Content Language

繁體中文

Chinese Abstract

三鈣矽酸鹽(Tricalcium silicate, C3S)屬於生醫陶瓷材料的一種,是目前常見牙髓填補材料MTA之主要成分,由於其操作性質優異,生物活性及生物相容性佳,被視為極具潛力的新興生醫材料。在製備三鈣矽酸鹽的過程中,需在1400 degreeC,晶相為三斜晶系(triclinic),雖含少量二鈣矽酸鹽(C2S)和氧化鈣(CaO),但純度已比傳統固相合成法高出許多;藉由加入1–2 wt%的氟離子,不但在1400 degreeC可以得到幾乎純相的triclinic F-C3S,在1100–1250 degreeC也得到菱形晶系(rhombohedral)F-C3S。氟離子不但降低合成溫度,也有提高產物純度的效果。此外,藉由固態核磁共振的技術,我們發現以沉澱法製備的triclinic F-C3S結晶性極高,相較於rhombohedral F-C3S在29Si譜Q0位置出現一個寬波,triclinic F-C3S的光譜解析度極佳,相同化學位移範圍得到七根半高寬僅0.5 ppm的訊號,此七根訊號可視為九種不等價(nonequivalent)的Si,透過29Si– 29Si DQ/SQ 同核關聯性實驗進一步得到Si與Si之間的距離關係,並搭配晶體結構,最後解出兩種可能的對應關係。 材料的硬化時間(setting time)及微硬度(microhardness)測試方面,triclinic C3S皆比rhombohedral C3S表現出色,且triclinic C3S在加入氟離子後,更使硬化時間縮短一半,微硬度增加一倍以上,材料性質更趨優異。整體來說,加入氟離子對於三鈣矽酸鹽有許多正面效應,使三鈣矽酸鹽在未來能有更好的應用性。

English Abstract

Tricalcium silicate (Ca3SiO5, C3S), the main component of mineral trioxide aggregate (MTA), is a potential dental material because of its favorable sealing ability, bioactivity, and biocompatibility. Pure phase of C3S, however, could only be obtained at 1400 degreeC or above. The requirement of high temperature and the poor compressive strength of C3S are undesirable for its clinical applications. Fluoride ions, as a fluxing reagent, can significantly lower the calcination temperature for C3S formation. In this study, C3S are prepared in the presence of NaF by co-precipitation method. By adding 0 to 2 wt% of NaF, different polymorphs of C3S are obtained from 1100 to 1400 degreeC. At 1400 degreeC, the triclinic phase of C3S is the major product, with or without the addition of fluoride. At a temperature of 1100 to 1250 degreeC, the rhombohedral phase of C3S could be obtained by doping 1 to 2 wt% of NaF. In the absence of fluoride ions, however, only dicalcium silicate (C2S) would be formed. In addition to lowering the formation temperature, the setting time and microhardness of C3S can also be improved by the addition of fluorides. The 29Si magic-angle spinning NMR spectra of the rhombohedral C3S show a broad Q0 peak spanning the range from -69 to -75 ppm, whereas there are seven distinct sharp peaks (FWHM ~0.5 ppm) in the same chemical shift range of the Q0 site for the triclinic C3S samples. In other words, the triclinic phase of C3S has significantly higher crystallinity than the rhombohedral phase. Based on a series of 29Si–29Si double-quantum/single-quantum spectra, we have narrowed down the spectral assignments of the resolved seven resonances to two possible scenarios.

Topic Category 基礎與應用科學 > 化學
理學院 > 化學研究所
Reference
  1. 2. Best, S. M.; Porter, A. E.; Thian, E. S.; Huang, J., Bioceramics: Past, present and for the future. J. Eur. Ceram. Soc. 2008, 28 (7), 1319-1327.
    連結:
  2. 3. Hench, L. L., Biomaterials: A forecast for the future. Biomaterials 1998, 19 (16), 1419-1423.
    連結:
  3. 4. Hench, L. L., Sol-gel materials for bioceramic applications. Curr. Opin. Solid State Mat. Sci. 1997, 2 (5), 604-610.
    連結:
  4. 5. Alhadainy, H. A., Root perforations - a review of literature. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 1994, 78 (3), 368-374.
    連結:
  5. 6. McDonald, N. J.; Dumsha, T. C., Evaluation of the retrograde apical seal using dentine bonding materials. 1990; Vol. 23, p 156-62.
    連結:
  6. 7. Lee, S. J.; Monsef, M.; Torabinejad, M., Sealing ability of a mineral trioxide aggregate for repair of lateral root perforations. J. Endod. 1993, 19 (11), 541-544.
    連結:
  7. 8. Lee, Y. L.; Lee, B. S.; Lin, F. H.; Lin, A. Y.; Lan, W. H.; Lin, C. P., Effects of physiological environments on the hydration behavior of mineral trioxide aggregate. Biomaterials 2004, 25 (5), 787-793.
    連結:
  8. 9. C., E., A molecular mechanism of aluminium-induced alzheimer's disease? J Inorg Biochem. 1999, 76 (2), 133-140.
    連結:
  9. 10. Ylmen, R.; Jaglid, U.; Steenari, B. M.; Panas, I., Early hydration and setting of portland cement monitored by ir, sem and vicat techniques. Cem. Concr. Res. 2009, 39 (5), 433-439.
    連結:
  10. 12. I. Maki, S. C., Microscopic study on the polymorphism of ca3sio5. Cem. Concr. Res. 1978, 8 (4), 407-414.
    連結:
  11. 13. Urabe, K.; Nakano, H.; Morita, H., Structural modulations in monoclinic tricalcium silicate solid solutions doped with zinc oxide, m(i), m(ii), and m(iii). J. Am. Ceram. Soc. 2002, 85 (2), 423-429.
    連結:
  12. 14. Zhao, W. Y.; Wang, J. Y.; Zhai, W. Y.; Wang, Z.; Chang, J., The self-setting properties and in vitro bioactivity of tricalcium silicate. Biomaterials 2005, 26 (31), 6113-6121.
    連結:
  13. 15. Zhao, W. Y.; Chang, J., Sol-gel synthesis and in vitro bioactivity of tricalcium silicate powders. Mater. Lett. 2004, 58 (19), 2350-2353.
    連結:
  14. 16. Richardson, I. G.; Groves, G. W., The incorporation of minor and trace-elements into calcium silicate hydrate (c-s-h) gel in hardened cement pastes. Cem. Concr. Res. 1993, 23 (1), 131-138.
    連結:
  15. 18. Hench, L. L., Genetic design of bioactive glass. J. Eur. Ceram. Soc. 2008, 29, 1257-1265.
    連結:
  16. 19. Huan Z, C. J., Novel tricalcium silicate/monocalcium phosphate monohydrate composite bone cement. Journal of Biomedical Materials Research 2008, 82, 352-359.
    連結:
  17. 20. MacLaren, D. C.; White, M. A., Cement: Its chemistry and properties. J. Chem. Educ. 2003, 80 (6), 623-635.
    連結:
  18. 21. Brunauer, S.; Kantro, D. L.; Weise, C. H., The heat of decomposition of tricalcium silicate into beta-dicalcium silicate and calcium oxide. J. Phys. Chem. 1956, 60 (6), 771-774.
    連結:
  19. 22. Nocunwczelik, W., Thermogravimetric studies of the tricalcium silicate hydration in the presence of solid additives. J. Therm. Anal. 1990, 36 (6), 2109-2111.
    連結:
  20. 23. Welch, J. H.; Gutt, W., Tricalcium silicate and its stability within the system cao-sio2. J. Am. Ceram. Soc. 1959, 42 (1), 11-15.
    連結:
  21. 24. Segal, D., Chemical synthesis of advanced ceramic materials. Cambridge University Press: 1991.
    連結:
  22. 25. Meiszterics, A.; Rosta, L.; Peterlik, H.; Rohonczy, J.; Kubuki, S.; Henits, P.; Sinko, K., Structural characterization of gel-derived calcium silicate systems. J. Phys. Chem. A 114 (38), 10403-10411.
    連結:
  23. 26. Zhao, W. Y.; Chang, J., Two-step precipitation preparation and self-setting properties of tricalcium silicate. Materials Science & Engineering C-Biomimetic and Supramolecular Systems 2008, 28 (2), 289-293.
    連結:
  24. 27. Bentz, D. P.; Garboczi, E. J.; Haecker, C. J.; Jensen, O. M., Effects of cement particle size distribution on performance properties of portland cement-based materials. Cem. Concr. Res. 1999, 29 (10), 1663-1671.
    連結:
  25. 28. Stephan, D.; Dikoundou, S. N.; Raudaschl-Sieber, G., Influence of combined doping of tricalcium silicate with mgo, al(2)o(3) and fe(2)o(3): Synthesis, grindability, x-ray diffraction and (29)si nmr. Mater. Struct. 2008, 41 (10), 1729-1740.
    連結:
  26. 30. Lin, Q.; Lan, X. H.; Li, Y. B.; Ni, Y. R.; Lu, C. H.; Chen, Y. X.; Xu, Z. Z., Preparation and in vitro bioactivity of zinc incorporating tricalium silicate. Materials Science & Engineering C-Materials for Biological Applications 31 (3), 629-636.
    連結:
  27. 31. Featherstone, J. D. B., The science and practice of caries prevention. J. Am. Dent. Assoc. 2000, 131 (7), 887-899.
    連結:
  28. 32. Tran, T. T.; Nakagaki, H.; Kato, K.; Phan, A. H.; Inukai, J.; Tsuboi, S.; Hirose, M. N.; Igarashi, S.; Robinson, C., Effect of strontium in combination with fluoride on enamel remineralisation in vitro. Arch. Oral Biol. 2008, 53 (11), 1017-1022.
    連結:
  29. 33. Brauer, D. S.; Karpukhina, N.; Law, R. V.; Hill, R. G., Structure of fluoride-containing bioactive glasses. J. Mater. Chem. 2009, 19 (31), 5629-5636.
    連結:
  30. 34. S. Abdul-Maula, I. O., Effect of oxidic composition on portland cement raw meal burnability. World Cement Technology 1980, 11 (9), 330-336.
    連結:
  31. 35. Ghosh, S. N., Cement and concrete science & technology. Abi Books: 1991.
    連結:
  32. 36. Tran, T. T.; Herfort, D.; Jakobsen, H. J.; Skibsted, J., Site preferences of fluoride guest ions in the calcium silicate phases of portland cement from si-29{f-19} cp-redor nmr spectroscopy. J. Am. Chem. Soc. 2009, 131 (40), 14170-+.
    連結:
  33. 37. Thomas, J. J., A new approach to modeling the nucleation and growth kinetics of tricalcium silicate hydration. J. Am. Ceram. Soc. 2007, 90 (10), 3282-3288.
    連結:
  34. 38. Thomas, J. J.; Jennings, H. M.; Chen, J. J., Influence of nucleation seeding on the hydration mechanisms of tricalcium silicate and cement. J. Phys. Chem. C 2009, 113 (11), 4327-4334.
    連結:
  35. 39. Masse, S.; Zanni, H.; Lecourtier, J.; Roussel, J. C.; Rivereau, A., [sup 29]si solid state nmr study of tricalcium silicate and cement hydration at high temperature. Journal Name: Cement and Concrete Research; (United States); Journal Volume: 23:5 1993, Medium: X; Size: Pages: 1169-1177.
    連結:
  36. 40. Bellmann, F.; Damidot, D.; Moser, B.; Skibsted, J., Improved evidence for the existence of an intermediate phase during hydration of tricalcium silicate. Cem. Concr. Res. 40 (6), 875-884.
    連結:
  37. 41. Brough, A. R.; Dobson, C. M.; Richardson, I. G.; Groves, G. W., In-situ solid-state nmr-studies of Ca3SiO5 - hydration at room-temperature and at elevated-temperatures using si-29 enrichment. J. Mater. Sci. 1994, 29 (15), 3926-3940.
    連結:
  38. 1. Rabi, I. I.; Zacharias, J. R.; Millman, S.; Kusch, P., A new method of measuring nuclear magnetic moment. Physical Review 1938, 53 (4), 318-318.
    連結:
  39. 2. Bloch, F., Nuclear induction. Physical Review 1946, 70 (7-8), 460-474.
    連結:
  40. 3. Purcell, E. M.; Torrey, H. C.; Pound, R. V., Resonance absorption by nuclear magnetic moments in a solid. Physical Review 1946, 69 (1-2), 37-38.
    連結:
  41. 4. Ernst, R. R., Nuclear-magnetic-resonance fourier-transform spectroscopy (nobel lecture). Angew. Chem.-Int. Edit. Engl. 1992, 31 (7), 805-823.
    連結:
  42. 7. Levitt, M. H., Spin dynamics: Basics of nuclear magnetic resonance. John Wiley & Sons: 2001.
    連結:
  43. 8. Bloembergen, N.; Purcell, E. M.; Pound, R. V., Relaxation effects in nuclear magnetic resonance absorption. Physical Review 1948, 73 (7), 679-712.
    連結:
  44. 9. Vold, R. L.; Waugh, J. S.; Klein, M. P.; Phelps, D. E., Measurement of spin relaxation in complex systems. J. Chem. Phys. 1968, 48 (8), 3831-&.
    連結:
  45. 10. Meiboom, S.; Gill, D., Modified spin-echo method for measuring nuclear relaxation times. Rev. Sci. Instrum. 1958, 29 (8), 688-691.
    連結:
  46. 11. Laws, D. D.; Bitter, H. M. L.; Jerschow, A., Solid-state nmr spectroscopic methods in chemistry. Angew. Chem.-Int. Edit. 2002, 41 (17), 3096-3129.
    連結:
  47. 12. Lowe, I. J.; Norberg, R. E., Free-induction decays in solids. Physical Review 1957, 107 (1), 46-61.
    連結:
  48. 13. Andrew, E. R.; Bradbury, A.; Eades, R. G., Nuclear magnetic resonance spectra from a crystal rotated at high speed. Nature 1958, 182 (4650), 1659-1659.
    連結:
  49. 14. Gunne, J.; Eckert, H., High-resolution double-quantum p-31 nmr: A new approach to structural studies of thiophosphates. Chem.-Eur. J. 1998, 4 (9), 1762-1767.
    連結:
  50. 15. Bertmer, M.; Eckert, H., Dephasing of spin echoes by multiple heteronuclear dipolar interactions in rotational echo double resonance nmr experiments. Solid State Nucl. Magn. Reson. 1999, 15 (3), 139-152.
    連結:
  51. 16. Engelsbe.M; Norberg, R. E., Nuclear magnetic-resonance and nuclear-spin dynamics in inp. Physical Review B 1972, 5 (9), 3395-&.
    連結:
  52. 17. Tsai, T. W. T.; Chou, F. C.; Tseng, Y. H.; Chan, J. C. C., Solid-state p-31 nmr study of octacalcium phosphate incorporated with succinate. Phys. Chem. Chem. Phys. 2010, 12 (25), 6692-6697.
    連結:
  53. 1. Zhao, W. Y.; Chang, J., Two-step precipitation preparation and self-setting properties of tricalcium silicate. Materials Science & Engineering C-Biomimetic and Supramolecular Systems 2008, 28 (2), 289-293.
    連結:
  54. 3. Jawed, I.; Young, J. F.; Ghose, A.; Skalny, J., Effect of melt composition on tricalcium silicate - its formation and composition. Cem. Concr. Res. 1984, 14 (1), 99-104.
    連結:
  55. 4. Wang, W. H.; Lee, Y. L.; Lin, C. P.; Lin, F. H., Synthesis of partial-stabilized cement (psc) via sol-gel process. J. Biomed. Mater. Res. Part A 2008, 85A (4), 964-971.
    連結:
  56. 5. Skoog, D. A. H., F. J.; cROUCH, S. B., Principles of instrumental analysis. 6ed. 2007.
    連結:
  57. 6. Smith, R. L. S., G. E., An accurate method of determining the hardness of metals with particular reference to those of a high degree of hardness. PROCEEDINGS OF THE iNSTItution of Mechanical Engineers 1922, 1, 623-641.
    連結:
  58. 7. Lee, Y. L.; Lee, B. S.; Lin, F. H.; Lin, A. Y.; Lan, W. H.; Lin, C. P., Effects of physiological environments on the hydration behavior of mineral trioxide aggregate. Biomaterials 2004, 25 (5), 787-793.
    連結:
  59. 8. Kristiansen, P. E.; Carravetta, M.; Lai, W. C.; Levitt, M. H., A robust pulse sequence for the determination of small homonuclear dipolar couplings in magic-angle spinning nmr. Chem. Phys. Lett. 2004, 390 (1-3), 1-7.
    連結:
  60. 9. Brouwer, D. H.; Darton, R. J.; Morris, R. E.; Levitt, M. H., A solid-state nmr method for solution of zeolite crystal structures. J. Am. Chem. Soc. 2005, 127 (29), 10365-10370.
    連結:
  61. 10. Brouwer, D. H.; Kristiansen, P. E.; Fyfe, C. A.; Levitt, M. H., Symmetry-based si-29 dipolar recoupling magic angle spinning nmr spectroscopy: A new method for investigating three-dimensional structures of zeolite frameworks. J. Am. Chem. Soc. 2005, 127 (2), 542-543.
    連結:
  62. 1. Lin, Q.; Li, Y. B.; Lan, X. H.; Lu, C. H.; Xu, Z. Z., Effect of caf2 on preparation and in vitro bioactivity of tricalcium silicates. Chinese Journal of Inorganic Chemistry 2008, 24 (12), 1937-1942.
    連結:
  63. 2. Urabe, K.; Nakano, H.; Morita, H., Structural modulations in monoclinic tricalcium silicate solid solutions doped with zinc oxide, m(i), m(ii), and m(iii). J. Am. Ceram. Soc. 2002, 85 (2), 423-429.
    連結:
  64. 3. Vega, A. J.; Scherer, G. W., Study of structural evolution of silica-gel using h-1 and si-29 nmr. J. Non-Cryst. Solids 1989, 111 (2-3), 153-166.
    連結:
  65. 4. Hjorth, J.; Skibsted, J.; Jakobsen, H. J., Si-29 mas nmr-studies of portland-cement components and effects of microsilica on the hydration reaction. Cem. Concr. Res. 1988, 18 (5), 789-798.
    連結:
  66. 5. N.I. Golovastikov, R. G. M., N.V. Belov, Crystal structure of the tricalcium silicate. 3cao sio2=c3s. Soviet physics, crystallography 1976, 29, 441.
    連結:
  67. 7. Smith, J. V.; Blackwell, C. S.; Hovis, G. L., Nmr of albite microcline series. Nature 1984, 309 (5964), 140-142.
    連結:
  68. 8. Thomas, J. M.; Klinowski, J.; Ramdas, S.; Hunter, B. K.; Tennakoon, D. T. B., The evaluation of non-equivalent tetrahedral sites from si-29 nmr chemical-shifts in zeolites and related aluminosilicates. Chem. Phys. Lett. 1983, 102 (2-3), 158-162.
    連結:
  69. 9. Skibsted, J.; Hjorth, J.; Jakobsen, H. J., Correlation between si-29 nmr chemical-shifts and mean si-o bond lengths for calcium silicates. Chem. Phys. Lett. 1990, 172 (3-4), 279-283.
    連結:
  70. 10. Thomas, J. J.; Jennings, H. M.; Chen, J. J., Influence of nucleation seeding on the hydration mechanisms of tricalcium silicate and cement. J. Phys. Chem. C 2009, 113 (11), 4327-4334.
    連結:
  71. 11. Gartner, E. M., A proposed mechanism for the growth of c-s-h during the hydration of tricalcium silicate. Cem. Concr. Res. 1997, 27 (5), 665-672.
    連結:
  72. 12. Torabinejad, M.; Hong, C. U.; McDonald, F.; Ford, T. R. P., Physical and chemical-properties of a new root-end filling material. J. Endod. 1995, 21 (7), 349-353.
    連結:
  73. 13. Clayden, N. J.; Dobson, C. M.; Hayes, C. J.; Rodger, S. A., Hydration of tricalcium silicate followed by solid-state si-29 nmr-spectroscopy. J. Chem. Soc.-Chem. Commun. 1984, (21), 1396-1397.
    連結:
  74. 1. Rajeswari, T. V. T. a. S., Biological evaluation of bioceramic material - a review. Trends in Biomaterials & Artificial Organs 2004, 18 (1), 9-17.
  75. 11. Taylor, H. F. W., Cement chemistry. T. Telford: 1997.
  76. 17. Richardson, I. G.; Groves, G. W., The structure of the calcium silicate hydrate phases present in hardened pastes of white portland cement blast-furnace slag blends. J. Mater. Sci. 1997, 32 (18), 4793-4802.
  77. 29. Tenorio, J. A. S.; Pereira, S. S. R.; Ferreira, A. V.; Espinosa, D. C. R.; Araujo, F. G. D., Cct diagrams of tricalcium silicate - part i. Influence of the fe2o3 content. Mater. Res. Bull. 2005, 40 (3), 433-438.
  78. 5. Jenner, J., Lecture, Ampere Summer School, Basko Polje, Yugoslavia. 1971.
  79. 6. Rule, G. S.; Hitchens, T. K., Fundamentals of protein nmr spectroscopy. In Focus on structural biology, Springer, Po Box 17, 3300 Aa Dordrecht, Netherlands: 2006; Vol. 5, p 1.
  80. 2. Taylor, H. F. W., Cement chemistry. T. Telford: 1997.
  81. 6. N. I. Golovastikov, R. G. M., N. V. Belov, Crystal structure of tricalcium silicate. Kristallografiya 1975, 20, 721-729.