Title

染料改質二氧化鈦與有機半導體異質接面混摻太陽能電池的機制研究

Translated Titles

Theoretical Study on the Surface Modified TiO2:P3HT Hybrid solar Cells

DOI

10.6342/NTU.2012.03315

Authors

唐鈺軒

Key Words

表面改質二氧化鈦與導電高分子混掺太陽能電池 ; 數值模型 ; 延伸指數函數 ; 優化 ; surface modifier TiO2/P3HT hybrid solar cell ; stretched exponential ; theoretical model

PublicationName

臺灣大學化學工程學研究所學位論文

Volume or Term/Year and Month of Publication

2012年

Academic Degree Category

碩士

Advisor

林祥泰

Content Language

英文

Chinese Abstract

在本研究中我們建構一個混合式異質接面結構有機導電高分子太陽電池的理論模型,其中包含光子在活化層被受體吸收、光激子的移動、電子電洞的分離、電子(電洞)在活化層內的漂移和邊界上的載子熱注入。利用數值方法解卜瓦松與連續體方程式,再藉由布朗模型描述電子與電動的解離,藉此來描述導電高分子太陽能電池的放電表現,而後更進一步的將其拓展到表面改質金屬氧化物與導電高分子混掺的太陽能電池。我們發現在表面改質金屬氧化物與導電高分子混掺太陽能電池中,可以有效的把電荷轉移態與自由載子間的解離速率大幅提升,造成二氧化鈦表面改質與導電高分子混摻太陽能電池的填充因子(fill factor)與開環電壓(open circuit voltage)比純有機混摻太陽能電池大的多。但與純有機系統相較,其光激子轉變為電荷轉移態的效率沒有來的好(~100%),應是其光電轉化效率較低的主因。

English Abstract

In this thesis, we develop a theoretical model for modeling the current-voltage characteristics of surface modified TiO2/P3HT hybrid solar cells. This model considers the adsorption of photons, the excitation and transport of excitons, the formation of polaron, and its dissociation to free charge carriers. The transport of free charge carriers is governed by the poisson and continuity equations. We found that the surface modifier enhances the efficiency of polaron dissociation. The efficient polaron dissociation can result in high fill factor and high open circuit voltage. However, compared with the organic polymer solar cells, there is a significant loss of excitons before they can be converted to poalrons in surface modified TiO2/P3HT solar cell. This is the main reason for the lowered efficiency of the surface modified TiO2/P3HT solar cells.

Topic Category 工學院 > 化學工程學研究所
工程學 > 化學工業
Reference
  1. 2. Blom, P.W.M., V.D. Mihailetchi, L.J.A. Koster, and D.E. Markov, Device physics of polymer : fullerene bulk heterojunction solar cells. Advanced Materials, 2007. 19(12): p. 1551-1566.
    連結:
  2. 5. Gratzel, M., Photoelectrochemical cells. Nature, 2001. 414(6861): p. 338-344.
    連結:
  3. 6. Tang, C.W. and A.C. Albrecht, Photovoltaic Effects of Metal-Chlorophyll-A-Metal Sandwich Cells. Journal of Chemical Physics, 1975. 62(6): p. 2139-2149.
    連結:
  4. 7. Tang, C.W., 2-Layer Organic Photovoltaic Cell. Applied Physics Letters, 1986. 48(2): p. 183-185.
    連結:
  5. 9. Kietzke, T., Recent Advances in Organic Solar Cells. Advances in OptoElectronics, 2007. 2007.
    連結:
  6. 10. Chidichimo, G. and L. Filippelli, Organic Solar Cells: Problems and Perspectives. International Journal of Photoenergy, 2010.
    連結:
  7. 11. Sirringhaus, H., Device physics of Solution-processed organic field-effect transistors. Advanced Materials, 2005. 17(20): p. 2411-2425.
    連結:
  8. 12. Marks, R.N., J.J.M. Halls, D.D.C. Bradley, R.H. Friend, and A.B. Holmes, The Hotovoltaic Response in Poly(p-Phenylene Vinylene) Thin-Film Devices. Journal of Physics-Condensed Matter, 1994. 6(7): p. 1379-1394.
    連結:
  9. 13. Huynh, W.U., J.J. Dittmer, and A.P. Alivisatos, Hybrid nanorod-polymer solar cells. Science, 2002. 295(5564): p. 2425-2427.
    連結:
  10. 14. Sun, S.Q., P. Mendes, K. Critchley, S. Diegoli, M. Hanwell, S.D. Evans, G.J. Leggett, J.A. Preece, and T.H. Richardson, Fabrication of gold micro- and nanostructures by photolithographic exposure of thiol-stabilized gold nanoparticles. Nano Letters, 2006. 6(3): p. 345-350.
    連結:
  11. 15. Kwong, C.Y., W.C.H. Choy, A.B. Djurisic, P.C. Chui, K.W. Cheng, and W.K. Chan, Poly(3-hexylthiophene): TiO2 nanocomposites for solar cell applications. Nanotechnology, 2004. 15(9): p. 1156-1161.
    連結:
  12. 16. Beek, W.J.E., M.M. Wienk, and R.A.J. Janssen, Efficient hybrid solar cells from zinc oxide nanoparticles and a conjugated polymer. Advanced Materials, 2004. 16(12): p. 1009-+.
    連結:
  13. 17. McDonald, S.A., G. Konstantatos, S.G. Zhang, P.W. Cyr, E.J.D. Klem, L. Levina, and E.H. Sargent, Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nature Materials, 2005. 4(2): p. 138-U14.
    連結:
  14. 18. Choudhury, K.R., Y. Sahoo, T.Y. Ohulchanskyy, and P.N. Prasad, Efficient photoconductive devices at infrared wavelengths using quantum dot-polymer nanocomposites. Applied Physics Letters, 2005. 87(7).
    連結:
  15. 19. Arici, E., N.S. Sariciftci, and D. Meissner, Hybrid solar cells based on nanoparticles of CuInS2 in organic matrices. Advanced Functional Materials, 2003. 13(2): p. 165-171.
    連結:
  16. 21. Xu, T.T. and Q.Q. Qiao, Conjugated polymer-inorganic semiconductor hybrid solar cells. Energy & Environmental Science, 2011. 4(8): p. 2700-2720.
    連結:
  17. 22. Lin, Y.Y., T.H. Chu, S.S. Li, C.H. Chuang, C.H. Chang, W.F. Su, C.P. Chang, M.W. Chu, and C.W. Chen, Interfacial Nanostructuring on the Performance of Polymer/TiO(2) Nanorod Bulk Heterojunction Solar Cells. Journal of the American Chemical Society, 2009. 131(10): p. 3644-3649.
    連結:
  18. 23. Ma, W.L., C.Y. Yang, X. Gong, K. Lee, and A.J. Heeger, Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Advanced Functional Materials, 2005. 15(10): p. 1617-1622.
    連結:
  19. 24. Li, G., V. Shrotriya, J.S. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature Materials, 2005. 4(11): p. 864-868.
    連結:
  20. 26. Greenham, N.C., X.G. Peng, and A.P. Alivisatos, Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. Physical Review B, 1996. 54(24): p. 17628-17637.
    連結:
  21. 27. Zeng, T.W., Y.Y. Lin, H.H. Lo, C.W. Chen, C.H. Chen, S.C. Liou, H.Y. Huang, and W.F. Su, A large interconnecting network within hybrid MEH-PPV/TiO2 nanorod photovoltaic devices. Nanotechnology, 2006. 17(21): p. 5387-5392.
    連結:
  22. 28. Coakley, K.M. and M.D. McGehee, Photovoltaic cells made from conjugated polymers infiltrated into mesoporous titania. Applied Physics Letters, 2003. 83(16): p. 3380-3382.
    連結:
  23. 29. Ravirajan, P., S.A. Haque, J.R. Durrant, D.D.C. Bradley, and J. Nelson, The effect of polymer optoelectronic properties on the performance of multilayer hybrid polymer/TiO2 solar cells. Advanced Functional Materials, 2005. 15(4): p. 609-618.
    連結:
  24. 30. Goh, C., S.R. Scully, and M.D. McGehee, Effects of molecular interface modification in hybrid organic-inorganic photovoltaic cells. Journal of Applied Physics, 2007. 101(11).
    連結:
  25. 31. Kwong, C.Y., A.B. Djurisic, P.C. Chui, K.W. Cheng, and W.K. Chan, Influence of solvent on film morphology and device performance of poly(3-hexylthiophene): TiO2 nanocomposite solar cells. Chemical Physics Letters, 2004. 384(4-6): p. 372-375.
    連結:
  26. 32. Boucle, J., S. Chyla, M.S.P. Shaffer, J.R. Durrant, D.D.C. Bradley, and J. Nelson, Hybrid solar cells from a blend of poly(3-hexylthiophene) and ligand-capped TiO2 nanorods. Advanced Functional Materials, 2008. 18(4): p. 622-633.
    連結:
  27. 33. Lin, Y.Y., T.H. Chu, C.W. Chen, and W.F. Su, Improved performance of polymer/TiO(2) nanorod bulk heterojunction photovoltaic devices by interface modification. Applied Physics Letters, 2008. 92(5).
    連結:
  28. 34. Huang, Y.C., J.H. Hsu, Y.C. Liao, W.C. Yen, S.S. Li, S.T. Lin, C.W. Chen, and W.F. Su, Employing an amphiphilic interfacial modifier to enhance the performance of a poly(3-hexyl thiophene)/TiO(2) hybrid solar cell. Journal of Materials Chemistry, 2011. 21(12): p. 4450-4456.
    連結:
  29. 35. Zeng, T.W., C.C. Ho, Y.C. Tu, G.Y. Tu, L.Y. Wang, and W.F. Su, Correlating Interface Heterostructure, Charge Recombination, and Device Efficiency of Poly(3-hexyl thiophene)/TiO(2) Nanorod Solar Cell. Langmuir, 2011. 27(24): p. 15255-15260.
    連結:
  30. 36. Grebenkin, K.F. and A.L. Kutepov, Band gap estimation for a triaminotrinitrobenzene molecular crystal by the density-functional method. Semiconductors, 2000. 34(10): p. 1161-1162.
    連結:
  31. 37. Harrison, M.G., J. Gruner, and G.C.W. Spencer, Analysis of the photocurrent action spectra of MEH-PPV polymer photodiodes. Physical Review B, 1997. 55(12): p. 7831-7849.
    連結:
  32. 38. Desormeaux, A., J.J. Max, and R.M. Leblanc, Photovoltaic and Electrical-Properties of Al/Langmuir-Blodgett Films/Ag Sandwich Cells Incorporating Either Chlorophyll-A, Chlorophyll-B, or Zinc Porphyrin Derivative. Journal of Physical Chemistry, 1993. 97(25): p. 6670-6678.
    連結:
  33. 39. Pettersson, L.A.A., L.S. Roman, and O. Inganas, Modeling photocurrent action spectra of photovoltaic devices based on organic thin films. Journal of Applied Physics, 1999. 86(1): p. 487-496.
    連結:
  34. 40. Sievers, D.W., V. Shrotriya, and Y. Yang, Modeling optical effects and thickness dependent current in polymer bulk-heterojunction solar cells. JOURNAL OF APPLIED PHYSICS, 2006. 100(11).
    連結:
  35. 41. Haarer, D., Zero-Phonon Lines in Singlet Spectrum of Charge-Transfer Crystal Anthracene-PMDA - Experimental-Evidence and Model Calculations. Journal of Chemical Physics, 1977. 67(9): p. 4076-4085.
    連結:
  36. 42. Onsager, L., Initial recombination of ions. Physical Review, 1938. 54(8): p. 554-557.
    連結:
  37. 43. Braun, C.L., Electric-Field Assisted Dissociation of Charge-Transfer States as a Mechanism of Photocarrier Production. Journal of Chemical Physics, 1984. 80(9): p. 4157-4161.
    連結:
  38. 44. Koster, L.J.A., V.D. Mihailetchi, and P.W.M. Blom, Bimolecular recombination in polymer/fullerene bulk heterojunction solar cells. Applied Physics Letters, 2006. 88(5).
    連結:
  39. 47. Phillips, J.C., Stretched exponential relaxation in molecular and electronic glasses. Reports on Progress in Physics, 1996. 59(9): p. 1133-1207.
    連結:
  40. 48. Chen, R., Apparent stretched-exponential luminescence decay in crystalline solids. Journal of Luminescence, 2003. 102: p. 510-518.
    連結:
  41. 49. Apitz, D. and P.M. Johansen, Limitations of the stretched exponential function for describing dynamics in disordered solid materials. Journal of Applied Physics, 2005. 97(6).
    連結:
  42. 50. Zatryb, G., A. Podhorodecki, J. Misiewicz, J. Cardin, and F. Gourbilleau, On the nature of the stretched exponential photoluminescence decay for silicon nanocrystals. Nanoscale Research Letters, 2011. 6.
    連結:
  43. 51. Goliber, T.E. and J.H. Perlstein, Aanlysis of Photogeneration in a Doped Polymer System in Terms of a Kinetic-Model for Electric-Field-Assisted Dissociation of Charge-Transfer States. Journal of Chemical Physics, 1984. 80(9): p. 4162-4167.
    連結:
  44. 52. Padovani, F.A. and R. Stratton, Field and thermionic-field emission in Schottky barriers. Solid-State Electronics, 1966. 9(7): p. 695-707.
    連結:
  45. 53. Scott, J.C. and G.G. Malliaras, Charge injection and recombination at the metal-organic interface. Chemical Physics Letters, 1999. 299(2): p. 115-119.
    連結:
  46. 54. S. M. Sze, K.K.N., ed. Physics of Semiconductor Device, 3rd Edition. 2007. 154.
    連結:
  47. 55. Lacic, S. and O. Inganas, Modeling electrical transport in blend heterojunction organic solar cells. Journal of Applied Physics, 2005. 97(12).
    連結:
  48. 56. Scharfet.Dl and H.K. Gummel, Large-Signal Analtsis of a Silicon Read Diode Oscillator. Ieee Transactions on Electron Devices, 1969. ED16(1): p. 64-&.
    連結:
  49. 57. Koster, L.J.A., E.C.P. Smits, V.D. Mihailetchi, and P.W.M. Blom, Device model for the operation of polymer/fullerene bulk heterojunction solar cells. Physical Review B, 2005. 72(8).
    連結:
  50. 58. Chang, C.H., T.K. Huang, Y.T. Lin, Y.Y. Lin, C.W. Chen, T.H. Chu, and W.F. Su, Improved charge separation and transport efficiency in poly(3-hexylthiophene)-TiO2 nanorod bulk heterojunction solar cells. Journal of Materials Chemistry, 2008. 18(19): p. 2201-2207.
    連結:
  51. 59. Mihailetchi, V.D., H.X. Xie, B. de Boer, L.J.A. Koster, and P.W.M. Blom, Charge transport and photocurrent generation in poly (3-hexylthiophene): Methanofullerene bulk-heterojunction solar cells. Advanced Functional Materials, 2006. 16(5): p. 699-708.
    連結:
  52. 61. Al-Ibrahim, M., H.K. Roth, U. Zhokhavets, G. Gobsch, and S. Sensfuss, Flexible large area polymer solar cells based on poly(3-hexylthiophene)/fullerene. Solar Energy Materials and Solar Cells, 2005. 85(1): p. 13-20.
    連結:
  53. 62. Skompska, M., Hybrid conjugated polymer/semiconductor photovoltaic cells. Synthetic Metals, 2010. 160(1-2): p. 1-15.
    連結:
  54. 1. 經濟部能源局, 中華民國99年能源統計手冊.
  55. 3. ghsolar. http://www.ghsolar.be/EN/types-of-pv-cells.htm.
  56. 4. PVsolarchina. http://www.pvsolarchina.com/difference-between-monocrystalline-polycrystalline-and-amorphous-thin-film-solar-cell.html.
  57. 8. NREL, Best research-Cell efficienies. http://www.nrel.gov/ncpv/images/efficiency_chart.jpg, 2011.
  58. 20. Arici, E., H. Hoppe, F. Schaffler, D. Meissner, M.A. Malik, and N.S. Sariciftci, Morphology effects in nanocrystalline CuInSe2-conjugated polymer hybrid systems. Applied Physics a-Materials Science & Processing, 2004. 79(1): p. 59-64.
  59. 25. Friend, R.H., G.J. Denton, J.J.M. Halls, N.T. Harrison, A.B. Holmes, A. Kohler, A. Lux, S.C. Moratti, K. Pichler, N. Tessler, K. Towns, and H.F. Wittmann, Electronic excitations in luminescent conjugated polymers. Solid State Communications, 1997. 102(2-3): p. 249-258.
  60. 45. Accascina, M.F.a.F., Eleltrolytic Conductance. p. p213.
  61. 46. Langevin, P., The recombination and mobilities of ions in gases. Annales De Chimie Et De Physique, 1903. 28: p. 433-530.
  62. 60. Kim, H., W.W. So, and S.J. Moon, Effect of thermal annealing on the performance of P3HT/PCBM polymer photovoltaic cells. Journal of the Korean Physical Society, 2006. 48(3): p. 441-445.