Translated Titles

Apply Range-Based Multivariate Volatility Models in the Hedge of TAIEX Futures, HSI Futures and CSI 300 index Futures





Key Words

避險績效 ; GJR-GARCH ; CARR ; Copula ; 最小變異避險比率 ; Hedge performance ; GJR-GARCH ; CARR ; Copula ; Minimum variance hedging ratio



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract

隨著國際金融的發展及期貨避險被廣泛運用,使得投資人和金融機構可透過交易指數期貨,進而規避系統性風險。再者,由於近年來中國資本市場的開放,金融交易活動漸趨國際化與自由化,例如2014年的滬港通,顯示兩岸三地之間的金融活動也更加緊密。 從以往的文獻中可看出大多數的研究皆集中在GARCH族模型之比較,而且較少文獻是以兩岸三地為研究對象,因此,本文探討兩岸三地指數期貨之避險績效,採用以報酬率為基礎的模型如CCC-GJR-GARCH、DCC-GJR-GARCH及Copula-based GJR-GARCH模型,以波動變幅為基礎的模型有DCC-CARR及Copula-based CARR模型。研究CARR族模型是否比GARCH族模型更能捕捉資料的波動,以及加入Copula函數後,是否更能配適資料間的相關性。 實證結果顯示,不論在樣本內外,台灣和中國皆以Copula-based CARR模型表現較優,台灣市場的結果甚至發現加入動態Copula函數的CARR模型表現最佳。香港的樣本內避險雖以Copula-based CARR模型績效最好,但樣本外卻以Copula-based GARCH模型表現較優,同樣也是加入動態Copula函數後的GARCH模型表現較靜態和傳統模型好。

English Abstract

With the development of the international finance and a wide use on hedging strategies using futures, investors and financial institutions can avoid systemic risks by index futures trading. Moreover, due to the opening up of Chinese capital markets in recent years, financial transactions become more international and liberalized. For instance, the Shanghai-Hong Kong Stock Connect scheme in 2014 demonstrates a closer financing activities among Taiwan, Hong Kong and China become more closely. In early studies, most researchers concentrated on the comparison in GARCH family models, but few placed their interests in the markets, including Taiwan, Hong Kong and China. Therefore, this study aimed to investigate the hedge performance of TAIEX futures, HSI futures and CSI 300 index futures. Apart from investigating the hedge fund performance in Greater China area, this research tried to discover whether CARR family models have better ability to catch price volatility than of GARCH family models, and to figure out whether the correlation between spots and futures become fitter after adding Copula functions. In this study, some return-based GARCH family models, namely CCC-GJR-GARCH, DCC-GJR-GARCH and Copula-based GARCH models, and some ranged-based CARR family models, including DCC-CARR and Copula-based CARR models. The empirical application of the models proposed in this study shows that both Taiwan and China perform better, no matter in-sample or out-of-sample in Copula-based CARR models. Furthermore, compared to other markets, Taiwan performed the best in the Copula-based CARR models with dynamic copula functions. Also, the result shows Hong Kong performs the best in in-sample tests in Copula-based CARR models. However, it has a better performance in Copula-based GARCH models on out-of-sample tests. In the same way, Hong Kong performs better than both static and traditional models after adding the dynamic copula functions.

Topic Category 商管學院 > 財務金融學系碩士班
社會科學 > 財金及會計學
  1. 2.朱珈瑩 (2014),日本首相安倍的寬鬆政策下―台幣、日圓、韓元之關聯結構分析,淡江大學財務金融學系碩士在職專班碩士論文。
  2. 3.吳俞蓉 (2012),個股期貨契約避險績效之研究,國立中正大學財務金融學系碩士論文。
  3. 5.巫春洲、劉炳麟、楊奕農 (2009),農產品期貨動態避險策略的評價,農業與經濟,第42卷,頁39-62。
  4. 6.李亦屏 (2004),黃金期貨之避險分析,中原大學企業管理學系碩士論文。
  5. 7.李沃牆、李莠苓 (2011),應用Copula-GJR-GARCH模型於黃金與白銀期貨之避險,台灣期貨與衍生性商品學刊,第12期,頁28-65。
  6. 9.柯星妤 (2013),金磚五國之期貨避險績效─應用Copula-based GJR-GARCH模型,淡江大學財務金融學系碩士論文。
  7. 11.張戊烟 (2012),台灣股票現貨對應股票指數期貨的避險比例與避險績效之研究-OLS, Rolling Regression, Bivariate CC GARCH and Bivariate DCC GARCH模型,中興大學企業管理學系學系碩士論文。
  8. 19.黃薇之 (2010),重新評估DCC-GARCH及DCC-CARR模型之避險績效,淡江大學財務金融學系碩士在職專班碩士論文。
  9. 20.楊怡婷 (2005),最適避險比率與波動異質性之研究,淡江大學經濟學系碩士論文。
  10. 22.劉炳麟 (2009),多變量變幅波動模型的理論與應用,國立交通大學財務金融學系博士論文。
  11. 1.Anderson, R. W. and J. P. Danthine, (1981), “Cross Hedging,” Journal of Political Economy, Vol.89, No.6, pp. 1182-1196.
  12. 2.Bollerslev, T., (1990), “Modeling the Coherence in Short-Run Nominal Exchange Rates: Multivariate Generalized ARCH Approach,” Review of Economic and Statistics, Vol. 72, pp. 498-505.
  13. 3.Bollerslev, T., R. F. Engle and J. M. Wooldridge, (1988), “A Capital Asset Pricing Model with Time-Varying Covariances,” Journal of Political Economy, Vol. 96, pp. 116-131.
  14. 4.Chang, C. L., M. McAleer and R. Tansuchat, (2011), “Crude Oil Hedging Strategies Using Dynamic Multivariate GARCH,” Energy Economics, Vol. 33, Issue 5, pp. 912-923.
  15. 5.Chen, Y. H. and A. H. Tu, (2013), “Estimating Hedged Portfolio Value-at-Risk Using The Conditional Copula: An Illustration of Model Risk,” International Review of Economics and Finance, Vol. 27, pp. 514-528.
  16. 6.Chou, R. Y., (2005), “Forecasting Financial Volatilities with Extreme Values: The Conditional Autoregressive Range (CARR) Model,” Journal of Money, Credit, and Banking, Vol. 37, No. 3, pp. 561-582.
  17. 7.Chou, R. Y., (2006), “Modeling The Asymmetry of Stock Movements Using Price Ranges,” Advances in Econometrics, Vol. 37, pp. 561-582.
  18. 8.Chou, R. Y., C. C., Wu and N., Liu, (2009), “Forecasting Time-Varying Covariance with A Range-Based Dynamic Conditional Correlation Model, ” Review of Quantitative Finance and Accounting, Vol. 33, Issue 4, pp. 327-345.
  19. 9.Choudhry, T., (2009), “Short-Run Deviations and Time-Varying Hedge Ratios: Evidence from Agricultural Futures Markets,” International Review of Financial Analysis, Vol. 18, Issues 1–2, pp. 58-65.
  20. 10.Chung, S. K., (2009), “Bivariate Mixed Normal GARCH Models and Out-of-Sample Hedge Performances,” Finance Research Letters, Vol. 6, Issue 3, pp. 130-137.
  21. 11.Ederington, L. H., (1979). “The Hedging Performance of The New Futures Markets,” Journal of Finance, Vol. 34, pp. 157-170.
  22. 12.Engle, R. F., (2002), “Dynamic Conditional Correlation-A Simple Class of Multivariate GARCH Models,” Journal of Business and Economic Statistics, Vol. 20, No. 3, pp. 339-350.
  23. 13.Glosten, L. R., R. Jagannathan and D. E. Runkle, (1993), “On The Relationship Between The Expected Value and The Volatility of The Nominal Excess Returns on Stocks,” Journal of Finance, Vol. 48, pp. 1779-1801.
  24. 14.Haigh, M. S., (2005), “Conditional Volatility Forecasting in A Dynamic Hedging Model,” Journal of Forecasting, Vol. 24, Issue 3, pp. 155–172.
  25. 15.Hansen, B. E., (1994), “Autoregressive Conditional Density Estimation,” International Economic Review, Vol. 35, pp. 705-730.
  26. 16.Hou, Y. and S. Li, (2013), “Hedging Performance of Chinese Stock Index Futures: An Empirical Analysis Using Wavelet Analysis and Flexible Bivariate GARCH Approaches Original Research,” Pacific-Basin Finance Journal, Vol. 24, pp. 109-131.
  27. 18.Hsu, C. C., C. P. Tseng and Y. H. Wang, (2008), “Dynamic Hedging with Futures:A Copula-Based GARCH Model ,” Journal of Futures Markets, Vol. 28, No. 11, pp. 1095-1116.
  28. 19.Joe, H., (1997), Multivariate Models and Dependence Concepts, Chapman & Hall, London.
  29. 20.Johnson, L., (1960), “The Theory of Hedging and Speculation in Commodity Futures,” Review of Economic Studies, Vol. 27, pp. 139-151.
  30. 21.Kumar, D. and S. Maheswaran, (2014), “A New Approach to Model and Forecast Volatility Based on Extreme Value of Asset Prices,” International Review of Economics and Finance, Vol. 33, pp. 128-140.
  31. 22.Li, M. and L. Yang, (2013), “Modeling The Volatility of Futures Return in Rubber and Oil—A Copula-Based GARCH Model Approach,” Economic Modelling, Vol. 35, pp. 576-581.
  32. 23.Lin, X., Q. Chen and Z. Tang, (2014), “Dynamic Hedging Strategy in Incomplete Market:Evidence from Shanghai Fuel Oil Futures Market,” Economic Modelling, Vol. 40, pp. 81-90.
  33. 24.Markowitz, H. M., (1952), “Portfolio Selection,” Journal of Finance, Vol. 7, pp. 77-91.
  34. 26.Patton, A. J., (2006), “On Default Correlation: A Copula Function Approach,” International Economic Review, Vol. 47, pp. 527-556.
  35. 27.Wei, Y., Y. Wang and D. Huang, (2011), “A Copula-Multifractal Volatility Hedging Model for CSI 300 Index Futures,” Physica A:Statistical Mechanics and its Applications, Vol. 390, Issues 23-24, pp. 4260-4272.
  36. 28.Witt, H., T. Schroeder and M. Hayenga, (1987), “Comparison of Analytical Approaches for Estimating Hedge Ratios for Agricultural Commodities,” Journal of Futures Markets, Vol. 7, pp. 135-146.
  37. 30.Wu, C. C. and S. S. Liang, (2011), “The Economic Value of Range-Based Covariance Between Stock and Bond Returns with Dynamic Copulas,” Journal of Empirical Finance, Vol. 18, Issue 4, pp. 711-727.
  38. 31.Zanotti, G., G. Gabbi and M. Geranio, (2010), “Hedging with Futures:Efficacy of GARCH Correlation Models to European Electricity Markets,” Journal of International Financial Markets, Institutions and Money, Vol. 20, Issue 2, pp. 135-148.
  39. 一、中文文獻
  40. 1.王毓蓉 (2005),股價指數期貨動態避險之應用,國立高雄第一科技大學金融營運學系碩士論文。
  41. 4.宋俊億 (2010),比較不同動態條件相關性模型在亞洲各國股價指數期貨之避險效果,國立高雄第一科技大學財務管理學系碩士論文。
  42. 8.李尚霖 (2011),應用關聯結構理論於期貨避險之研究,國立彰化師範大學企業管理學系碩士論文。
  43. 10.翁妮鈴 (2007),利用CCC與DCC模型估算能源期貨最適避險比率,國立交通大學經營管理學系碩士論文。
  44. 12.許宜憲 (2014),台灣50指數避險績效分析,國立雲林科技大學財務金融系碩士論文。
  45. 13.陳亭汝 (2000),考量交易成本後利用台灣加權股價指數期貨對現貨避險績效之研究,實踐大學企業管理學系碩士論文。
  46. 14.陳昱宏 (2005),利用DCC-CARR及DCC-GARCH模型求算商品期貨最適避險比率,國立中央大學財務金融學系碩士論文。
  47. 15.陳恕潔 (2009),股市現貨、期貨的最適避險比率—Copula函數的應用,輔仁大學金融學系碩士論文。
  48. 16.陳麗華 (2011),台灣指數期貨避險模型之績效評估,雲林科技大學財務金融系碩士論文。
  49. 17.黃昱凱 (2010),DCC與Copula模型在商品期貨之避險績效的比較,國立高雄第一科技大學財務管理學系碩士論文。
  50. 18.黃智鴻 (2010),報酬與變幅動態條件相關係數模型在原油市場的避險應用與比較,國立高雄第一科技大學財務管理學系碩士論文。
  51. 21.趙婉伶 (2008),非對稱多變量模型於能源期貨最適動態避險策略之比較與應用,銘傳大學財務金融學系碩士論文。
  52. 23.蔡嘉薇 (2012),台灣股票期貨避險績效之探討,銘傳大學經濟學系碩士在職專班碩士論文。
  53. 24.賴昌作 (2000),股價指數期貨之避險比率與避險效益,國立台灣科技大學資訊管理系碩士論文。
  54. 二、英文文獻
  55. 17.Howard, C. T. and L. J. D’Antonio, (1984), “A Risk-Return Measure of Hedging Effectiveness,” The Journal of Financial and Quantitative Analysis , Vol. 19, No. 1, pp. 101-112.
  56. 25.Pan, Z. and X. Sun, (2013), “Hedging Strategy Using Copula and Nonparametric Methods:Evidence from China Securities Index Futures,” International Journal of Economics and Financial Issues, Vol. 4, No. 1, pp. 107-121.
  57. 29.Working, H., (1953), “Futures Trading and Hedging,” American Economics Review, Vol. 43, No. 3, pp. 314-343.
  58. 三、相關網站
  59. 1.Futures Industry Association http://www.futuresindustry.org/
  60. 2.台灣期貨交易所http://www.taifex.com.tw/chinese/index.asp
  61. 3.香港交易所http://www.hkex.com.hk/chi/index_c.htm
  62. 4.中國金融期貨交易所http://www.cffex.com.cn/