Title

漣漪波長對潤濕性的影響

Translated Titles

Effect of wavelength on wettability of the ripple structures

DOI

10.6846/TKU.2015.00094

Authors

陳柏年

Key Words

次微米漣漪結構 ; 接觸角 ; 共平面 ; sub-micron ripple structure ; contact angle ; coplanar

PublicationName

淡江大學機械與機電工程學系碩士班學位論文

Volume or Term/Year and Month of Publication

2015年

Academic Degree Category

碩士

Advisor

林清彬

Content Language

繁體中文

Chinese Abstract

本研究使用應力拉伸法,先將聚二甲基矽氧烷熱塑性彈性體薄膜夾持固定分別給予10%至80%的拉伸應變後,濺鍍6A鈦鍍層後再給予應力回復,該薄膜表面會產生挫曲並自我組裝形成348nm至553nm特徵波長的漣漪結構,並討論漣漪特徵波長對潤濕性的影響。實驗結果表明漣漪結構的特徵波長會隨著薄膜的拉伸應變增加而減少,並且在應力回復時漣漪差排會隨著漣漪的出現而產生。從共軛焦顯微結構圖中可以發現在次微米波長漣漪結構上的去離子水滴接觸角模型為Wenzel’s model,但是由於漣漪結構表面上的6A鈦鍍層並非完整薄膜而是以不規則長條狀的孤島型態分佈,故在親水/疏水共平面產生的動態氣墊潤濕效應與次微米波長的漣漪結構作用下,俱鈦鍍層漣漪結構的去離子水滴接觸角將隨特徵波長下降而上升。利用翻印製程所製出無鈦鍍層之特徵波長348nm至553nm的漣漪結構,由於其振幅與波長的比例皆小於0.44,故潤濕狀態無法從Wenzel’s model轉換至CB model,因此該次波長的漣漪結構是無法大幅增加去離子水滴的接觸角。

English Abstract

The polydimethylsiloxane thermoplastic elastomer film was clamped and applied 10% to 80% tensile strain, and then we fixed the tensile strain and coated a 6A titanium layer on the surface of the film. After releasing the stretched film, spontaneous formation of ripple structure with 348nm to 553nm characteristic wavelength was obtained. Our experimental results showed that the characteristic wavelength of ripple structure reduced with an increase in tensile strain. Simultaneously, the ripple dislocation appeared as the ripple structure was formed. The confocal microscope micrograph of the deionized water droplets in the submicron ripple structure showed the patterns of the Wenzel’s model. However, because uniformly distribution of the isolated, long-irregular 6A titanium layer on the surface of submicron ripple structure resulted in the coplanar dynamic air cushion wetting effect, the contact angle between the DI water and the submicron ripple structure coated with titanium layer increased with a decrease in characteristic wavelength. By replicating process, a 348nm to 553nm characteristic wavelength ripple structure without titanium layer was obtained. Due to the ratios of amplitude and wavelength of the replicated ripple structures below 0.44, a transition to the CB model was not produced. Therefore, the submicron ripple structure was not effect an increase in the contact of the DI water droplet. The effect of the characteristic wavelength on the wettability of the submicron ripple structure was also studied.

Topic Category 工學院 > 機械與機電工程學系碩士班
工程學 > 機械工程
工程學 > 電機工程
Reference
  1. [1]Autumn, K., and Peattie, A. M., “Mechanisms of adhesion in geckos.”Integrative and Comparative Biology, 42(6) (2002) pp.1081-1090.
    連結:
  2. [2]Schweikart, A., and Fery, A., “Controlled wrinkling as a novel method for the fabrication of patterned surfaces.” Microchimica Acta, 165(3-4) (2009) pp.249-263.
    連結:
  3. [5]Cheng, Y. T., Rodak, D. E., Wong, C. A., and Hayden, C. A., “Effects of micro-and nano-structures on the self-cleaning behaviour of lotus leaves.” Nanotechnology, 17(5) (2006) pp.1359-1362.
    連結:
  4. [6]Neinhuis, C., and Barthlott, W., “Characterization and distribution of water-repellent, self-cleaning plant surfaces.” Annals of Botany, 79(6) (1997) pp.667-677.
    連結:
  5. [7]Barthlott, W., and Neinhuis, C., “Purity of the sacred lotus, or escape from contamination in biological surfaces.” Planta, 202(1) (1997) pp.1-8.
    連結:
  6. [9]Lackner, J. M., Waldhauser, W., Hartmann, P., Miskovics, O., Schmied, F., Teichert, C., and Schöberl, T., “Self-assembling (nano-) wrinkling topography formation in low-temperature vacuum deposition on soft polymer surfaces.” Thin Solid Films, 520(7) (2012) pp.2833-2840.
    連結:
  7. [10]Chung, J. Y., Nolte, A. J., and Stafford, C. M., “Surface Wrinkling: A Versatile Platform for Measuring Thin‐Film Properties.” Advanced materials, 23(3) (2011) pp.349-368.
    連結:
  8. [11]Wang, Y., Yang, R., Shi, Z., Zhang, L., Shi, D., Wang, E., and Zhang, G., “Super-elastic graphene ripples for flexible strain sensors.” Acs Nano, 5(5) (2011) pp.3645-3650.
    連結:
  9. [12]Lin, P. C., and Yang, S.“Mechanically switchable wetting on wrinkled elastomers with dual-scale roughness. ” Soft Matter, 5(5) (2009)pp.1011-1018.
    連結:
  10. [13]Feng, L., Zhang, Z., Mai, Z., Ma, Y., Liu, B., Jiang, L., and Zhu, D., “A super‐hydrophobic and super‐oleophilic coating mesh film for the separation of oil and water.” Angewandte Chemie International Edition, 43(15) (2004) pp.2012-2014.
    連結:
  11. [14]Guo, Z., Liu, W., and Su, B. L., “Superhydrophobic surfaces: from natural to biomimetic to functional.” Journal of colloid and interface science, 353(2) (2011) pp.335-355.
    連結:
  12. [15]Lee, D., Seo, S. B., Kim, D. Y., Kim, H. M., Cho, C., Lee, J., Lim,S., Kim, J., Lee, B., and Kim, B., “Nanotextured and polytetrafluoroethylene-coated superhydrophobic surface.” Thin Solid Films, 547 (2013) pp.111-115.
    連結:
  13. [16]Kim, B., Seo, S. B., Bae, K., Kim, D. Y., Baek, C. H., and Kim, H. M., “Stable superhydrophobic si surface produced by using reactive ion etching process combined with hydrophobic coatings.” Surface and Coatings Technology, 232 (2013) pp.928-935.
    連結:
  14. [17]Liu, S. J., and Chen, W. A., “Nanofeatured anti-reflective films manufactured using hot roller imprinting and self-assembly nanosphere lithography.” Optics and Laser Technology, 48 (2013) pp.226-234.
    連結:
  15. [18]Fürstner, R., Barthlott, W., Neinhuis, C., and Walzel, P., “Wetting and self-cleaning properties of artificial superhydrophobic surfaces.” Langmuir, 21(3) (2005) pp.956-961.
    連結:
  16. [19]Lin, J., Cai, Y., Wang, X., Ding, B., Yu, J., and Wang, M., “Fabrication of biomimetic superhydrophobic surfaces inspired by lotus leaf and silver ragwort leaf.” Nanoscale, 3(3) (2011) pp.1258-1262.
    連結:
  17. [20]Feng, L., Zhang, Y., Xi, J., Zhu, Y., Wang, N., Xia, F., and Jiang, L., “Petal effect: a superhydrophobic state with high adhesive force.” Langmuir, 24(8) (2008) pp.4114-4119.
    連結:
  18. [21]Li, Y., Huang, X. J., Heo, S. H., Li, C. C., Choi, Y. K., Cai, W. P., and Cho, S. O., “Superhydrophobic bionic surfaces with hierarchical microsphere/SWCNT composite arrays.” Langmuir, 23(4) (2007) pp.2169-2174.
    連結:
  19. [22]Bhushan, B., and Jung, Y. C., “Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction.” Progress in Materials Science, 56(1) (2011) pp.1-108.
    連結:
  20. [23]Adamson, A. W., and Gast, A. P., “Physical chemistry of surfaces.” (1967)
    連結:
  21. [24]Schrader, M. E., “Young-dupre revisited.” Langmuir, 11(9) (1995) pp.3585-3589.
    連結:
  22. [25]Nosonovsky, M., and Bhushan, B., “Roughness optimization for biomimetic superhydrophobic surfaces.” Microsystem Technologies, 11(7) (2005) pp.535-549.
    連結:
  23. [26]Blokhuis, E. M., Shilkrot, Y., and Widom, B., “Young's law with gravity.” Molecular Physics, 86(4) (1995) pp.891-899.
    連結:
  24. [27]Wenzel, R. N., “Resistance of solid surfaces to wetting by water.” Industrial and Engineering Chemistry, 28(8) (1936) pp.988-994.
    連結:
  25. [28]Cassie, A. B. D., and Baxter, S., “Wettability of porous surfaces.” Transactions of the Faraday Society, 40 (1944) pp.546-551.
    連結:
  26. [29]Nosonovsky, M., and Bhushan, B., “Patterned nonadhesive surfaces: superhydrophobicity and wetting regime transitions.” Langmuir, 24(4) (2008) pp.1525-1533.
    連結:
  27. [30]Choi, W., Tuteja, A., Mabry, J. M., Cohen, R. E., and McKinley, G. H., “A modified Cassie–Baxter relationship to explain contact angle hysteresis and anisotropy on non-wetting textured surfaces.” Journal of colloid and interface science, 339(1) (2009) pp.208-216.
    連結:
  28. [31]Cassie, A. B. D., “Contact angles.” Discuss. Faraday Soc., 3 (1948) pp.11-16.
    連結:
  29. [32]陳仲民,“微/奈米雙維度結構製造與潤濕性質”淡江大學機械與機電工程學系碩士班學位論文, (2012),pp.1-69.
    連結:
  30. [34]Thornton, J. A., “Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings.” Journal of Vacuum Science and Technology, 11(4) (1974) pp.666-670.
    連結:
  31. [37]Luo, C. W., Tang, W. T., Wang, H. I., Liao, L. W., Lo, H. P., Wu, K. H., Lin, J-Y., Juang, J.Y., Uen, T.M., and Kobayashi, T., “Controllable subwavelength-ripple and-dot structures on Y Ba2Cu3O7 induced by ultrashort laser pulses.” Superconductor Science and Technology, 25(11) (2012) 115008(5pp).
    連結:
  32. [38]Ziberi, B., Frost, F., Höche, T., and Rauschenbach, B., “Ripple pattern formation on silicon surfaces by low-energy ion-beam erosion: Experiment and theory.” Physical Review B, 72(23) (2005) 235310(7pp).
    連結:
  33. [39]Zhao, Y., Huang, W. M., and Fu, Y. Q., “Formation of micro/nano-scale wrinkling patterns atop shape memory polymers.” Journal of Micromechanics and Microengineering, 21(6) (2011) 067007(8pp).
    連結:
  34. [40]Yang, R., Zhang, L., Wang, Y., Shi, Z., Shi, D., Gao, H., Wang, E. and Zhang, G., “An anisotropic etching effect in the graphene basal plane.” Advanced materials, 22(36) (2010) pp.4014-4019.
    連結:
  35. [43]李育修,“聚二甲基矽氧烷鍍金之漣漪形成機制與型態”淡江大學機械與機電工程學系碩士班學位論文, (2005),pp.1-149.
    連結:
  36. [44]劉奎佑,“漣漪差排形成機制”淡江大學機械與機電工程學系碩士班學位論文, (2011),pp.1-42.
    連結:
  37. [45]Khang, D. Y., Rogers, J. A., and Lee, H. H., “Mechanical buckling: mechanics, metrology, and stretchable electronics.” Advanced Functional Materials, 19(10) (2007) pp.1526-1536.
    連結:
  38. [46]Guo, C., Feng, L., Zhai, J., Wang, G., Song, Y., Jiang, L., and Zhu, D., “Large‐Area Fabrication of a Nanostructure‐Induced Hydrophobic Surface from a Hydrophilic Polymer.” ChemPhysChem, 5(5) (2004) pp.750-753.
    連結:
  39. [47]Betzig, E., and Trautman, J. K., “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit.” Science, 257(5067) (1992) pp.189-195.
    連結:
  40. [48]Khan, A., Wang, Z., Sheikh, M. A., Whitehead, D. J., and Li, L., “Laser micro/nano patterning of hydrophobic surface by contact particle lens array.” Applied Surface Science, 258(2) (2011) pp.774-779.
    連結:
  41. [49]Lee, W., Zhang, X., and Briber, R. M., “A simple method for creating nanoporous block-copolymer thin films.” Polymer, 51(11) (2010) pp.2376-2382.
    連結:
  42. [50]Park, S., Kim, B., Wang, J. Y., and Russell, T. P., “Fabrication of highly ordered silicon oxide dots and stripes from block copolymer thin films.” Advanced Materials, 20(4) (2008) pp.681-685.
    連結:
  43. [53]Carbone, G., and L. Mangialardi. , “Hydrophobic properties of a wavy rough substrate. ” The European Physical Journal E, 16(1) (2005) pp.67-76.
    連結:
  44. [54]李宏洲,“雙相共平面基材之潤濕機制”淡江大學機械與機電工程學系碩士班學位論文, (2006),pp.1-127.
    連結:
  45. [3]Rechenberg, I., and El Khyari, A. R., “Der Sandskink der Sahara–Vorbild für Reibungs-und Verschleißminderung.” (2004) pp.1-5.
  46. [4]Feng, L., Li, S., Li, Y., Li, H., Zhang, L., Zhai, J. Song, Y., Liu, B. Jiang, L., and Zhu, D., “Super‐hydrophobic surfaces: from natural to artificial.” Advanced materials, 14(24) (2002) pp.1857-1860.
  47. [8]Ge, L., Sethi, S., Ci, L., Ajayan, P. M., and Dhinojwala, A., “Carbon nanotube-based synthetic gecko tapes.” Proceedings of the National Academy of Sciences, 104(26) (2007) pp.10792-10795.
  48. [33]Thornton, J. A., “High rate thick film growth.” Annual review of materials science, 7(1) (1977) pp.239-260.
  49. [35]邱繼暐,“直流磁控濺鍍輔以氧離子助鍍光學薄膜於塑膠基板” 國立中央大學光電科學與工程學系碩士班學位論文,(2004) ,pp.1-52.
  50. [36]顏志先,“氮化鈦感測場效電晶體應用於尿酸酵素之量測與積體化前端檢測電路之研究”國立雲林科技大學電子工程學系碩士班學位論文,(2004) ,pp.1-215.
  51. [41]Jiang, H., Khang, D. Y., Song, J., Sun, Y., Huang, Y., and Rogers, J. A., “Finite deformation mechanics in buckled thin films on compliant supports.” Proceedings of the National Academy of Sciences, 104(40) (2007) pp.15607-15612.
  52. [42]Volynskii, A. L., Bazhenov, S., Lebedeva, O. V., & Bakeev, N. F. “Mechanical buckling instability of thin coatings deposited on soft polymer substrates.” Journal of materials science, 35(3) (2000) pp.547-554.
  53. [51]劉永盛,“Poly (styrene-b-4-vinylpyridine) 自組裝塊式高分子薄膜應用於非揮發性記憶體的研究”國立交通大學材料科學與工
  54. 程學系碩士班學位論文,(2007) ,pp.1-57.
  55. [52]Broek, D., 陳文華, and 張士欽.“基本工程破裂力學.”國立編譯館, (1995)pp.101-153.