Translated Titles

Comparative study on axial stress of encased and laminated granular columns using numerical analysis





Key Words

地工合成材 ; 層狀加勁 ; 外包加勁 ; 數值模擬 ; 砂樁 ; Geosynthetic ; Laminated reinforced ; Encased reinforced ; Numerical modeling ; Sand column



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract

本研究使用數值分析方式,模擬試驗砂土及加勁材之力學行為。以軸對稱方式,建立加勁砂柱之數值模型,並利用程式FLAC進行分析,分別模擬實驗室之外包及層狀加勁砂柱之力學行為。確立模式正確性後,依現地砂樁尺寸與加勁材料,分析此兩種加勁方式在相同加勁材用量時,軸向承載行為之差異與加勁效能。 分析結果獲得無論是外包或層狀加勁,當樁徑愈小或加勁材勁度愈大,加勁材所提供之圍束應力愈大,柱體可承受之軸向壓力也愈大,對柱體腫脹之抑制效果愈佳。一般加勁材勁度的情況下(100-1000 kPa),層狀加勁所提供的軸向承載壓力優於外包形式;但若採用極高勁度加勁材(5000 kPa),且於較大的軸應變下,則外包加勁形式可提供較大的軸向壓力。此外,層狀加勁之加勁材與砂土間的界面摩擦角,也將明顯影響加勁礫石樁的軸向承載壓力。

English Abstract

The purpose of this study is to compare the mechanical behavior of encased and laminated granular columns using a numerical method. The numerical analysis is performed using the finite difference program FLAC. An axial symmetrical model is used based on elastic-plastic constitutive model with non-associated flow rule. Numerical analysis results are verified via laboratory triaxial tests on encased/laminated sand columns. The reinforcement stiffness, strength and diameter of the granular column in the field influence reinforced columns response is also studied. Based on the same amount of reinforcement, the axial bearing capacity is compared for the both reinforced types. Parametric studies on the column diameter, an increase in the reinforcement stiffness or a decrease in the column diameter might obtain greater axial bearing pressure and inhibit column bulging due to increase of confining pressure in the soil mass for the both of type reinforced columns. The bearing capability for a laminated reinforced column is greater than an encased column as same amount of reinforcement under general reinforcement stiffness (100-1000 kPa). However, the encased column might cause higher capability as using the high-stiffness (5000 kPa) reinforcement under larger axial strain. The interfacial friction angle may cause slippage to occur early for laminated reinforced columns. Therefore, a reinforced column with lower interfacial friction angle achieves lower strength.

Topic Category 工學院 > 土木工程學系碩士班
工程學 > 土木與建築工程
  1. 2. 蔡君平(2006),「地工合成物包裹砂柱試體之應力-應變行為探討」,碩士論文,淡江大學土木研究所,臺北。
  2. 3. 蔡伊雯(2007),「地工合成物水準加勁砂柱試體之力學行為之探討」,碩士論文,淡江大學土木研究所,臺北。
  3. 4. 黃振業(2009) ,「外包加勁砂柱之數值模擬」,碩士論文,淡江大學土木研究所,臺北。
  4. 5. 陳治夫(2012) ,「水平加勁砂柱之數值模擬」,碩士論文,淡江大學土木研究所,臺北。
  5. 6. 郭建明(2013) ,「軟弱黏土中外包加勁砂柱承載行為之數值模擬」,碩士論文,淡江大學土木研究所,臺北。
  6. 8. Bergado, D. T., Chai, J. C., Alfaro, M. C. and Balasubremaniam, A. S. (1992), “Improvement Techniques of Soft Ground in Subsiding and Lowland Environment,” Division of Geotechnical and Transportation Engineering, Asian Institute of Technology, Bangkok, Thailand, pp.56-60.
  7. 10. Chandrasekaran, B., Broms, B. B. & Wong, K. S. (1989), “Strength of Fabric Reinforced Sand under Axisymmetric Loading,” Geotextiles and Geomembranes, Vol. 8, pp.293-310.
  8. 13. Gray, D. H. and Ohashi, H. (1983), “Mechanics of Fiber Reinforcement in Sand,” Journal of Geotechnical Engineering Division, ASCE, Vol.109, No.3, pp.335-353.
  9. 14. Haeri, S. M., Noorzad, R. and Osakoorouchi, A. M. (2000), “Effect of Geotextile Reinforcement on the Mechanical Behavior of Sand,” Geotextiles and Geomembranes, Vol.18, pp.385-402.
  10. 15. Hughes, J. M. O. and Withers, N. J. (1974), “Reinforcing of Soft Chohesive Soils with Stone Columns”, Ground Engineering, Vol.7, pp.42-49.
  11. 19. Miura, S. and Toki, S. (1982), “A simple preparation method and its effect on static and cyclic deformation-strength properties of sand”, Soil and Foundations, Vol.22, No.1, pp.61-77.
  12. 20. Radhey S., (2004), “Compressive Load Response of Granular Piles Reinforced with Geogrids,” Canadian Geotechnical Journal , Vol. 41, pp. 187–192.
  13. 21. Rajagopal, K., Krishnaswamy, N. R. and Madhavi, L. G.. (1999), “Behavior of Sand Confined with Single and Multiple Geocells”, Geotextiles and Geomembranes, Vol.17, pp.171-184.
  14. 22. Thorburn, S. (1975), “Building Structures Supported by Stabilized Ground”, Geotechnique, Vol.25, No.1, pp.83-94.
  15. 23. Wu, C. S. and Hong, Y. S. (2008), “The Behavior of a Laminated Reinforced Granular Column,” Geotextiles and Geomenbranes, 26, pp302-316.
  16. 參考文獻
  17. 1. 沈欽裕(1996),「地工合成物加勁砂石樁載重-沉陷關係初探」,碩士論文,淡江大學土木研究所,臺北。
  18. 7. Al-Refeai, T. (1985), “Constitute Behavior of Fabric vs. Fiber Reinforced Sand”, Ph.D. Thesis, The University of Michigan, Annbor, Michigan.
  19. 9. Broms, B.B., (1977), “Triaxial Tests with Fabric-reinforced Soil,” Proceedings of the International Conference onthe Use of Fabric in Geotechnics, Vol. 3, pp. 129-134.
  20. 11. Cai, F. and Li, G.X., (1994), “Granular Piles Reinforced with Geosynthetics,” In: Proceedings of the 5th International conference on geotextiles, geomembranes and related products. Singapore, Vol. 1, pp. 347-350.
  21. 12. Duncan, J. M. and Chang, C. Y. (1970), “Nonlinear Analysis of Stress and Strain in Soils,” Journal of Geotechnical Engineering Division, ASCE, Vol.96, No.SM5, pp.1629-1653.
  22. 16. Janbu, N. (1963), “Soil Compressibility as Determind by Oedometer and Triaxial Test,” European Conference on Soil Mechanics and Foundation Engineering, Wissbaden, Germany, Vol.1, pp.19-25.
  23. 17. Kondner, R. L. (1963), “Hyperbolic Stress-Strain Response: Cohesive Soils,” Journal of Geotechnical Engineering Division, ASCE, Vol.89, No.SM1, pp.115-143.
  24. 18. Madhavi M.R., Alamgir M. and Miura N. (1994), “Improving Granular Column Capacity by Geogrid Reinforcement,” In: Proceedings of the 5th International conference on geotextiles, geomembranes and related products. Singapore , Vol. 1, pp. 351-356.