Title

聚二甲基矽氧烷鍍金之漣漪形成機制與型態

Translated Titles

Formation mechanism and topography of ripple of gold thin coatings deposited on Polydimethylsiloxane

DOI

10.6846/TKU.2005.00319

Authors

李育修

Key Words

聚二甲基矽氧烷 ; 回復應力 ; 鍍金 ; 漣漪結構 ; 楊氏模數 ; Polydimethylsiloxane ; Tensile stress release ; Gold coating ; Ripple ; Young's modulus

PublicationName

淡江大學機械與機電工程學系碩士班學位論文

Volume or Term/Year and Month of Publication

2005年

Academic Degree Category

碩士

Advisor

林清彬

Content Language

繁體中文

Chinese Abstract

本研究已成功發展一種大面積漣漪結構的製造方法,該製程係將聚二甲基矽氧烷(PDMS)薄膜,於伸長量5%之固定應變下濺鍍一層鍍金層,隨後將PDMS薄膜依單軸向釋放應力,使拉伸狀態下的PDMS薄膜受到回復應力,而在PDMS表面產生漣漪結構。經原子力顯微鏡量測後,漣漪結構最小波長與振幅分別為508nm及37.5nm,且平均表面粗糙度(Ra)均為5nm以下。本研究並探討PDMS薄膜的楊氏模數、鍍金時間與薄膜厚度對漣漪結構之波長、振幅與缺陷影響。實驗結果中,漣漪結構之波長與振幅隨楊氏模數增加而減少;隨鍍鍍金時間增加而上升;隨PDMS薄膜厚度增加而上升,但較厚的鍍金層易導致鍍金層從PDMS表面撕裂或剝離。在大面積漣漪結構形成過程中,衍發出排向表面裂縫、類差排及裂縫三種不同缺陷型態,其缺陷之尺寸隨漣漪結構波長增加而上升。另外,於PDMS薄膜未施加拉伸應變下濺鍍金鍍層,隨後給予拉伸應力,可由PDMS薄膜表面裂縫邊緣觀察到漣漪結構的初始型態。

English Abstract

The study has been developed successfully a process to manufacture the ripple structure with large area. The polydimethylsiloxane(PDMS) films were fixed under 5% tensile strain that were coated with gold, and then released the tensile strain. The ripple structure was formed on the surface of the PDMS film. By means of atomic force microscope observing, the minimum dimension of wavelength and the amplitude on the ripple structure with 508nm and 37.5nm, respectively, and the mean surface roughness(Ra) was all under 5nm. This study also probed into the effect of Young's modulus of PDMS, time of sputtering deposition gold and thickness of PDMS’s film on the wavelength, the amplitude and defect of the ripple structure. The wavelength and amplitude of the ripple structure decreased with increasing Young's modulus, increased with increasing time of sputtering deposition and thickness of PDMS film. But the thick gold film debonded and departed easily from the surface of PDMS film. During the history of the ripple structure was formed, three types of the defect easily happened in the ripple structure. (1) oriented surface crack; (2) dislocation-like; (3) crack, which the dimension of defect increased with increasing the wavelength of ripple structure.

Topic Category 工學院 > 機械與機電工程學系碩士班
工程學 > 機械工程
工程學 > 電機工程
Reference
  1. 2.U Valbusa, C Boragno and F Buatier de Mongeot, “Nanostructuring surfaces by ion sputtering”, Journal of Physics Matter, 14 (2002) pp8153-8175.
    連結:
  2. 3.R M Bradley and J M Harper, “Theory of ripple topography induced by ion bombardment” J. Vac. Sci. Technol. A , 6 (1988) pp2390-2395.
    連結:
  3. 4.G. I Sivashinsky, “Nonlinear analysis of hydrodynamic instability in laminar flames-I. Derivation of basic equations”, Acta Astronaut., 4 (1977) pp1177-1206.
    連結:
  4. 5.Jan Groenewold*, “Wrinkling of plates coupled with soft elastic media”, J. Groenewold/ Physica A, 298 (2001) pp32-45.
    連結:
  5. 6.L.D. Landau and E.M Lifshitz, “Course of Theoretical Physics, Theory of Elasticity”, 3rd Edition, 7 (1986).
    連結:
  6. 7.P. M. Fauchet, A.E. Siegman, Appl. Phys. A 32 (1983), p135.
    連結:
  7. 8.H.M. van Driel, J. E. Sipe and J.F. Young, ”Laser-Induced Periodic Surface Structure on Solids: A Universal Phenomenon”, Phys. Rev. Lett. 49 (1982) pp1955-1959.
    連結:
  8. 10.L. K. Ang, Y. Y. Lau, R. M. Gilgenbach, H. L. Spindler, J. S. Lash, “Surface instability of multipulse laser ablation on a metallic target“, Journal of Applied Physics, 83 (1998) pp4466-4471.
    連結:
  9. 11.Jurgen Reif , Florenta Costache, Matthias Henyk, V. Stanislav Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics”, Applied Surface Science, 197-198 (2002) pp891-895.
    連結:
  10. 15.F. Katzenberg, R. Janlewing, and J. Petermann, “Surface diffusion of metal atoms on polymer substrates during physical vapour deposition”, Colloid Polym. Sci., 10 (2000) pp280-284.
    連結:
  11. 16.Frank Katzenberg, “Irradiation- and Strain- Induced Self-Organization of Elastomer Srfaces”, Macromol. Mater. Eng., 286 (2001) pp26-29.
    連結:
  12. 18.F Katzenberg, “Cost-effective production of highly regular nano- structured metallization layers”, Institute of Physics Publishing, 14 (2003) pp1019-1022.
    連結:
  13. 19.Y. Leterrier, L. Boogh, J. Andersons, J.-A. E. Manson, “Adhesion of Silicon Oxide Layers on Poly (ethylene terephthalate). I: Effect of Substrate Properties on Coating’s Fragmentation Process”, January, 35 (1997) pp1463-1472.
    連結:
  14. 20.J. Krim, I. Heyvaert, C. Van Haesendonck, and Y. Bruynseraede, “Scanning Tunneling Microscopy Observation of Self-Affine Fractal Roughness in Ion-Bombarded Film Surfaces”, Phys. Rev. Lett., 70 (1993) pp57-60.
    連結:
  15. 21.S. Rusponi, C. Boragno,* and U. Valbusa, “Ripple Structure on Ag(110) Surface Induced by Ion Sputtering”, Physical Review Letters, 78 (1996) pp2795-2798.
    連結:
  16. 23.S Facsko, T Dekorsy, C Koerdt, C Trappe, H Kurz, Vogt A and Hartnagel H L , ” Formation of Ordered Nanoscale Semiconductor Dots by Ion Sputtering” Science, 285 (1999) pp1551-1553.
    連結:
  17. 24.J. Y. Marzin, J. M. Gerard, A. Izrael, D. Barrier, ”Photoluminescence of Single InAs Quantum Dots Obtained by Self-Organized Growth on GaAs”, Phys. Rev. Lett., 73 (1994) ppt716-719.
    連結:
  18. 25.G S Lau, E S Tok, R Liu, A T Swee, W C Tjiu and J Zhang, “Nanostructure formation by O2+ ion sputtering of Si/SiGe heterostructures”, Nanotechnology, 14 (2003) ppt1187-1191.
    連結:
  19. 26.賴怡仁, “Size control of self-assembled CdSe quantum dots grown by molecular beam epitaxy”, 私立中原大學, (2003), pp7-10.
    連結:
  20. 27.Nehal S. Chokshi and Joanna Mirecki Millunchicka, “Cooperative nucleation leading to ripple formation in InGaAs/GaAs films”, Applied Physics Letters, 76 (2000) pp2382-2384.
    連結:
  21. 28.J Nowak and W Scharf, “Magnetisation ripple structure in neodymium- cobalt thin films”, J. Phys. D: Appl. Phys., 12 (1979) pp139-140.
    連結:
  22. 29.K J Harte, ”Theory of Magnetization Ripple in Ferromagnetic films” J. Appl. Phys., 39 (1968) pp1503-1524.
    連結:
  23. 31.L. D. LANDAU and E, M. LIFSHITZ, “Elasticity Theory”(Nauka, Moscow, 1965).
    連結:
  24. 32.M. A. BIOT, J. Applied Mechanics 4 (1937) A1.
    連結:
  25. 34.J. W. S. Hearle, Polymers and Their Properties, Vol. 1, Fundamentals of Structure and Mechanics, Ellis Horwood, Ltd., Chichester, West Sussex, England, 1982.
    連結:
  26. 1.Navez M, Sella C and Chaperot D C. R. Acad. Sci., Paris 254 (1962) p240.
  27. 9.D. B. Chrisey, G. K. Hubler, “Pulsed Laser Deposition of thin films”, (Wiley, New York, 1994).
  28. 12.J. Reif, M. Henyk, and D. Wolfframm, SPIE Proc. Ser. 26 (2000) p3933.
  29. 13.Ned Bowden, Scott Brittain, Anthony G. Evans, W. John Hutchinson, and M. George Whitesides, “Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer”, Nature, 393 (1998) pp146-149.
  30. 14.T. S. Wilhelm Huck, Ned Bowden, Patrick Onck, Thoms Pardoen, W. John Hutchinson, and M. George Whitesides, “Ordering of Spontaneously Formed Buckles on Planar Surfaces”, Langmuir, 16 (2000) pp3497-3501.
  31. 17.A. L. Volynskii, S. Bazhenov, O. V. Lebedeva, and N. F. Bakeev, “Mechanical buckling instability of thin coatings deposited on soft polymer substrates”, Journal of Materials Science, 35 (2000), pp547-554.
  32. 22.W Zhou, A Cuenat, and M J Aziz, “Formation of self-organized nanostructures on Ge during focused ion beam sputtering”, Microscopy of semiconducting materials 2003: Proceedings of the 13thInternation al Conference on Microscopy of Semiconducting Materials, Cambridge University, 31 (2003) pp625-628.
  33. 30.M. Christopher Stafford, Christopher Harrison, L. Kathryn Beers, Alamgir Karim, J. Eric Amis, R. Mark Vanlandingham, Ho-Cheol Kim, Willivolksen, D. Robert Miller, and Eva E. Simonyi, “A buckling-based metrology for measuring the elastic moduli of polymeric thin films”, Nature Publishing Group, 3 (2004) pp545-550.
  34. 33.B. M. Das, “Principles of Soil Dynamics”, PWS-KENT, (1993) pp52-86.
  35. 35.Sih, G.C. and Hartranft, R.J., “Vaariation of strain energy release rate with plate thickness”. Int. J. Fract. Mech., 9 (1973) pp75-82.
Times Cited
  1. 陳柏年(2015)。漣漪波長對潤濕性的影響。淡江大學機械與機電工程學系碩士班學位論文。2015。1-49。 
  2. 簡呈安(2012)。非線性漣漪結構的製造。淡江大學機械與機電工程學系碩士班學位論文。2012。1-80。 
  3. 莊郁凡(2011)。漣漪差排之滑移機制。淡江大學機械與機電工程學系碩士班學位論文。2011。1-43。