Title

使用隨機式最佳化法於二維散射體之逆散射研究

Translated Titles

Application of Stochastic Optimization Methods to the Inverse Scattering of 2-D scatterers

DOI

10.6846/TKU.2012.00695

Authors

孫積賢

Key Words

逆散射 ; 微波成像 ; 時域有限差分法 ; 演化計算 ; Inverse Scattering ; Finite Difference Time Domain (FDTD) ; Moment Method (MoM) ; Green’s Function ; Dynamic Differential Evolution (DDE) ; Self-Adaptive Dynamic Differential Evolution (SADDE) ; Particle Swarm Optimization (PSO) ; Asynchronous Particle Swarm Optimization (APSO)

PublicationName

淡江大學電機工程學系博士班學位論文

Volume or Term/Year and Month of Publication

2012年

Academic Degree Category

博士

Advisor

丘建青

Content Language

繁體中文

Chinese Abstract

本論文提出一種新型隨機式最佳化演算法應用於高維度測試函數與二維逆散射問題。本論文的貢獻有兩點,第一點將隨機式最佳化演算法在九種不同特性之測試函數進行測試,結果發現,將”最佳”概念引進隨機式最佳化演算法容易陷入區域極値,而加入”自我適應”的概念之後,參數可以選取到較佳的數值,可以大幅度改善動態差異形演化法的搜尋能力與提升演算法的強健性。 第二個貢獻在研究埋藏於自由空間、半空間與三層空間二維散射體的電磁影像重建。此研究分別以有限時域差分法 (FDTD) 與動差法(MoM)為基礎,利用最佳化方法於時域重建埋藏於不同空間中二維散射體之特性參數。。 為了探究埋藏於不同空間中未知形狀的二維散射體,概念上吾人可向散射體發射電磁脈波/平面波,並量測其周圍的散射場,再針對此散射場分別以粒子群聚法(PSO)、非同步粒子群聚法(APSO)、動態差異形演化法(DDE)與自我適應之動態差異形演化法(SADDE)將逆散射問題轉化為求解最佳化問題。藉由量測而得的散射場以及計算而得的散射場數值互相比較,進而重建散射體的形狀函數。 本論文探討上述多種最佳化方法對於不同環境下的二維散射體之逆散射問題,並且引用統計的數據來分析判斷各種演算法的好壞。模擬結果顯示,即使最初的猜測值與實際散射體位置相距甚遠,此四種最佳化方法幾乎可以成功地重建出柱體的形狀,其中以自我適應之動態差異形演化法(SADDE)在執行三十次程式後,透過統計數據所得到之平均錯誤率、標準差值與收斂速度上,皆優於其他種隨機式全域演算法。

English Abstract

This dissertation presents a new stochastic optimization algorithm for high dimensional test functions and two-dimensional inverse scattering problem. There are two contributions of this dissertation, the first point of the stochastic optimization algorithms are tested in nine different benchmark functions and found that the idea of approaching the “Best” during the course of optimization procedure are easy to fail into local optimal solution. However, the algorithm of SADDE is a self-adaptive version of DDE, which is processed of self-adaptibility and the ability of approaching the “Best”. Based on the self-adaptive concept, it can improve the robustness of the algorithm. The second point is presented the studies of some stochastic optimization methods for the shape reconstruction and permittivity distribution of two-dimensional scatterers. The scatterers are located in free space, or embedded in a three-layered material medium, respectively. In time domain, Finite-difference time-domain (FDTD) technique is employed for electromagnetic analyses for both the forward and inverse scattering problems, while the reconstruction problem is transformed into optimization one during the course of inverse scattering. The idea is to perform the image reconstruction by utilization of some optimization scheme to minimize the discrepancy between the measured and calculated scattered field data. Four optimization schemes are tested and employed to search the parameter space to determine the shape, location and permittivity of the two-dimensional scatterers. They are asynchronous particle swarm optimization (APSO), particle swarm optimization (PSO), dynamic differential evolution (DDE) and self-adaptive dynamic differential evolution (SADDE). The suitability and efficiency of applying the above methods for microwave imaging of two-dimensional scatterers are examined in this dissertation. The statistical performances of these algorithms are compared. The results show that SADDE outperforms PSO, APSO and DDE in terms of the ability of exploring the optima. However, these results are considered to be indicative and do not generally apply to all optimization problems in electromagnetics.

Topic Category 工學院 > 電機工程學系博士班
工程學 > 電機工程
Reference
  1. [1] E. Wolf, “Three-dimensional structure determination of semi-transparentobjects from holographic data,” Opt. Commun., vol. 1, pp.153–164, Sep.-Oct. 1969.
    連結:
  2. [2] W. Imbriale, R. Mittra, “The Two-Dimensional Inverse Scattering Problem,” IEEE Transactions on Antennas and Propagation, Vol. 18, No. 5, pp. 633- 642, Sep. 1970.
    連結:
  3. [3] A. Massa, M.Pastorino, A. Rosani and M. Benedetti “A Microwave Imaging Method for NDE/NDT Based on the SMW Technique for the Electromagnetic Field Prediction,” IEEE Transactions on Instrumentation and Measurement, Vol. 55, No. 1, pp. 240 - 247, Feb. 2006.
    連結:
  4. [4] O. Mudanyalı, S. Yıldız, O. Semerci, A. Yapar, and I. Akduman, “A Microwave Tomographic Approach for Nondestructive Testing of Dielectric Coated Metallic Surfaces.”, IEEE Geoscience and Remote Sensing Letters, Vol. 5, No. 2, pp. 180 - 184, Apr. 2008.
    連結:
  5. [5] T. Rubak, O. S. Kim, P. Meincke, “Computational Validation of a 3-D Microwave Imaging System for Breast-Cancer Screening,” IEEE Transactions on Antennas and Propagation, vol. 57, No. 7, Jul. 2009.
    連結:
  6. [6] M. Klemm, J. A. Leendertz, D. Gibbins, I. J. Craddock, A. Preece, R. Benjamin, “Microwave Radar-Based Breast Cancer Detection: Imaging in Inhomogeneous Breast Phantoms” IEEE Antennas and Wireless Propagation Letters, Vol. 8, 2009.
    連結:
  7. [7] J. Bourqui, M. Okoniewski, E. C. Fear, “Balanced Antipodal Vivaldi Antenna With Dielectric Director for Near-Field Microwave Imaging.”, IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, Jul 2010.
    連結:
  8. [8] C. C. Chiu and Y. W. Kiang, “Inverse Scattering of a Buried Conducting Cylinder,” Inverse Problem, vol. 7, pp. 187-202, April 1991.
    連結:
  9. [9] Moghaddam, and M.; Chew, W.C, “Nonlinear two-dimensional velocity profile inversion using time domain data, ” IEEE Transactions on Geoscience and Remote Sensing, , Vol. 30 , No. 1 , Jan. 1992.
    連結:
  10. [10] Wenhua Yu, Zhongqiu Peng and Lang Jen, “A fast convergent method in electromagnetic inverse scattering,” IEEE Transactions on Antennas and Propagation, Vol. 44 ,No. 11 , Nov. 1996.
    連結:
  11. [11] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Transactions on Antennas Propagation, Vol. AP-14, pp. 302-307, May 1966
    連結:
  12. [12] Wenhua Yu and Raj Mittra, “An improved method for the reconstruction of lossy dielectric objects,” Microwave and Optical Technology Letters, Vol. 15, No. 5, August 1997
    連結:
  13. [13] Milica Popovic’ and Allen Taflove, “Two-Dimensional FDTD Inverse-Scattering Scheme for Determination of Near-Surface Material Properties at Microwave Frequencies,” IEEE Transactions on Antennas Propagation, Vol. 52, No. 9, Spet. 2004.
    連結:
  14. [14] M. Fink, and C. Prada, “Acoustic time-reversal mirrors, ” Inverse Problems, Vol. 17, pp.1-38, 2001
    連結:
  15. [15] T. Moriyama, Z. Meng, and T. Takenaka, "Forward-backward time-stepping method combined with genetic algorithm applied to breast cancer detection", Microwave and Optical Technology Letters, Vol. 53, No. 2, pp.438-442, 2011.
    連結:
  16. [16] R. J. Lavarello and M. L. Oelze, “Tomographic Reconstruction of Three-Dimensional Volumes Using the Distorted Born Iterative Method,” IEEE Transactions on Medical Imaging, Vol. 28, No.10, pp.1643-1652, Oct. 2009.
    連結:
  17. [17] E. Abenius and B. Strand, “Solving inverse electromagnetic problems using FDTD and gradient-based minimization” International Journal for Numerical Methods in Engineering Vol. 68, pp. 650-673, 2006.
    連結:
  18. [18] Catapano, I., L. Crocco, and T. Isernia, “Improved sampling methods for shape reconstruction of 3-D buried targets," IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 10, pp.3265-3273, Oct. 2008.
    連結:
  19. [19] Zaeytijd, J. D., A. Franchois, C. Eyraud, and J. M. Geffrin, “Full-wave three-dimensional microwave imaging with a regularized Gauss-Newton method: Theory and experiment, ” IEEE Transactions on Antennas and Propagation, Vol. 55, No. 11, pp.3279-3292, Nov. 2007.
    連結:
  20. [20] El-Shenawee, M., O. Dorn and M. Moscoso, “An adjoint-field technique for shape reconstruction of 3-D penetrable object immersed in lossy medium, ” IEEE Transactions on Antennas and Propagation, Vol. 57, No. 2, pp.520-534, Feb. 2009.
    連結:
  21. [21] R. Persico, R. Bernini, and F. Soldovieri, “The Role of the Measurement Configuration in Inverse Scattering From Buried Objects Under the Born Approximation,” IEEE Transactions on Antennas and Propagation, Vol. 53, No.6, pp. 1875-1887, Jun. 2005.
    連結:
  22. [22] X. Chen, K. Huang and X.-B. Xu, “Microwave imaging of buried inhomogeneous objects using parallel genetic algorithm combined with FDTD method:” Progress In Electromagnetic Research. PIER 53, pp. 283-298, 2005.
    連結:
  23. [24] R A. Wildman and D S. Weile, “Greedy Search And A Hybrid Local Optimization/Genetic Algorithm For Tree-Based Inverse Scattering,” Microwave and Optical Technology Letters, Vol. 50, No. 3, pp. pp. 822-825, Mar. 2008.
    連結:
  24. [25] A. Saeedfar, and K. Barkeshli, “Shape reconstruction of three-dimensional conducting curved plates using physical optics, number modeling, and genetic algorithm, ” IEEE Transaction on Antennas and Propagation, Vol. 54, No. 9, 2497-2507, Sep. 2006.
    連結:
  25. [26] A. Semnani, I.T. Rekanos, M. Kamyab, T.G. Papadopoulos, “Two-Dimensional Microwave Imaging Based on Hybrid Scatterer Representation and Differential Evolution,” IEEE Transaction on Antennas and Propagation, Vol. 58, No. 10, pp. 3289 - 3298, Oct. 2010.
    連結:
  26. [27] A. Qing, “Dynamic differential evolution strategy and applications in electromagnetic inverse scattering problems,” IEEE Transactions on Geoscience and Remote Sensing, Vol 44, Issue 1, pp. 116 – 125, Jan. 2006
    連結:
  27. [28] K. A. Michalski, “Electromagnetic Imaging of Circular-Cylindrical Conductors and Tunnels Using A Differential Evolution Algorithm,” Microwave and Optical Technology Letters, Vol. 27, No. 5, pp. 330 - 334, Dec. 2000.
    連結:
  28. [29] M. Dehmollaian, “Through-Wall Shape Reconstruction and Wall Parameters Estimation Using Differential Evolution,” IEEE Geoscience and Remote Sensing Letter, Vol. 8, 201-205, 2011.
    連結:
  29. [30] I. T. Rekanos, “Shape Reconstruction of a Perfectly Conducting Scatterer Using Differential Evolution and Particle Swarm Optimization,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 7, pp. 1967-1974, Jul. 2008.
    連結:
  30. [31] A. Semnani and M. Kamyab, “An Enhanced Hybrid Method for Solving Inverse Scattering Problems,” IEEE Transactions on Magentics, Vol. 45, No. 3, pp. 1534-1537, Mar. 2009.
    連結:
  31. [32] G. Franceschini, M. Donelli, R. Azaro and A. Massa, “Inversion of Phaseless Total Field Data Using a Two-Step Strategy Based on the Iterative Multiscaling Approach,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No.12, pp. 3527-3539, Dec. 2006.
    連結:
  32. [33] M. Donelli and A. Massa, ”Computational approach based on a particle swarm optimizer for microwave imaging of two-dimensional dielectric scatterers” IEEE Transactions on Microwave Theory and Techniques Vol. 53, Issue 5, pp.1761 – 1776, May 2005.
    連結:
  33. [34] T. Huang and A. S. Mohan,” Application of particle swarm optimization for microwave imaging of lossy dielectric objects” IEEE Transaction on Antennas and Propagation, Vol. 1B, pp.852 – 855, 2005.
    連結:
  34. [35] M. Donelli, G.. Franceschini, A. Martini and A. Massa,” An integrated multiscaling strategy based on a particle swarm algorithm for inverse scattering problems” IEEE Transactions on Geoscience and Remote Sensing, Vol 44, Issue 2, pp.298 – 312, Feb. 2006.
    連結:
  35. [36] M. Donelli, D. Franceschini, P. Rocca and A. Massa,” Three-Dimensional Microwave Imaging Problems Solved Through an Efficient Multiscaling Particle Swarm Optimization” IEEE Transactions on Geoscience and Remote Sensing, Vol 47, No. 5, pp.1467 – 1481, May. 2009.
    連結:
  36. [37] Y. Xia, G. Feng and J. Wang, “A Novel Recurrent Neural Network for Solving Nonlinear Optimization Problems With Inequality Constraints”, IEEE Transactions on Neural Network, Vol. 19, No. 8, pp. 1340 – 1353, Aug. 2008.
    連結:
  37. [38] V. A. Mikhnev, P. Vainikainen, “Two-step inverse scattering method for one-dimensional permittivity profiles,” IEEE Transactions on Antennas and Propagations, Vol. 48, Issue 2, pp. 293 - 298, Feb.2000.
    連結:
  38. [39] A. Brancaccio, G. Leone, R. Pierri, and F. Soldovieri, “One dimensional dielectric inverse profiling of embedded slabs by a quadratic approximation,” AEU Int. J. Electron. Communications, vol. 55, pp. 109–118, 2001.
    連結:
  39. [40] C. C. Chiu and P. T. Liu, “Image Reconstruction of a Perfectly Conducting Cylinder by the Genetic Algorithm,” IEE Proceeding-Microwaves Antennas and Propagation, vol. 143, pp. 249-253, June 1996.
    連結:
  40. [41] N. Joachimowicz, C. Pichot, and J. P. Hugonin, “Inverse Scattering: An Iterative Numerical Method for Electromagnetic Imaging.”, IEEE Transactions on Antennas and Propagation, Vol. 39, No. 12, Dec 1991.
    連結:
  41. [43] J. E. Johnson, T. Takenaka, K. A. H. Ping, S. Honda and T. Tanaka, “Advances in the 3-D Forward Backward Time-Stepping (FBTS) Inverse Scattering Technique for Breast Cancer Detection:” IEEE Transactions on Biomedical Engineering, Vol. 56, No. 3, pp. 2232-2243, Sep. 2009.
    連結:
  42. [44] A. G. Ramm, “Uniqueness result for inverse problem of geophysics: I,” Inverse Problems, Vol. 6, pp. 635-641, Aug.1990.
    連結:
  43. [45] V. Isakov, “Uniqueness and stability in multidimensional inverse problems,” Inverse Problems, Vol. 9, pp. 579–621, 1993.
    連結:
  44. [46] O. M. Bucci and T. Isernia, “Electromagnetic inverse scattering: Retrievable information and measurement strategies,” Radio Sci., Vol. 32, pp. 2123–2138, Nov.–Dec. 1997.
    連結:
  45. [47] D. Colton and L. Paivarinta, “The uniqueness of a solution to an inverse scattering problem for electromagnetic waves,” Arc. Ration. Mech. Anal., Vol. 119, pp. 59–70, 1992.
    連結:
  46. [48] S. Caorsi, M. Donelli, D. Franceschini, and A. Massa, “A new methodology based on an iterative multiscaling for microwave imaging,” IEEE Transactions on Microwave Theory and Techniques, Vol. 51, no. 4, pp. 1162-1173, Apr. 2003.
    連結:
  47. [53] D. S. Weile and E. Michielssen, “Genetic algorithm optimization applied to electromagnetics: a review ,” IEEE Transactions on Antennas and Propagation, Vol. 45, No. 3, pp. 343- 353, Mar. 1997.
    連結:
  48. [54] J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in electromagnetics,” IEEE Transactions on Antennas and Propagation, Vol. 52, No. 3, pp. 397–407, Feb. 2004.
    連結:
  49. [55] P. Rocca, G. Oliveri, and A. Massa,“Differential Evolution as Applied to Electromagnetics ,” IEEE Antennas and Propagation Magazine, Vol. 53, No. 1, pp. 38–49, May. 2011.
    連結:
  50. [57] C. C. Chiu, C. H. Sun and W. L. Chang “Comparison of Particle Swarm Optimization and Asynchronous Particle Swarm Optimization for Inverse Scattering of a Two- Dimensional Perfectly Conducting Cylinder.”, International Journal of Applied Electromagnetics and Mechanics Vol. 35, No.4, pp. 249-261,Apr. 2011.
    連結:
  51. [58] C. H. Sun, C. C. Chiu and C. L. Li, “Time-Domain Inverse Scattering of a Two- dimensional Metallic Cylinder in Slab Medium Using Asynchronous Particle Swarm Optimization.”, Progress In Electromagnetic Research M. PIER M Vol. 14, pp. 85-100. Aug. 2010.
    連結:
  52. [59] C. L. Li, C. C. Chiu and C. H. Huang “Time Domain Inverse Scattering for a Homogenous Dielectric Cylinder by Asynchronous Particle Swarm Optimization.” Journal of Testing and Evaluation, Vol. 38, No.3, 102868, May. 2011.
    連結:
  53. [61] J. R. Vilela, M. Zhang and W. Seah, "A performance study on synchronous and asynchronous updates in particle swarm optimization," ACM Proceedings of the 13th annual conference on Genetic and evolutionary computation, New York, pp. 21-28, 2011.
    連結:
  54. [62] A. Semnani, M. Kamyab, and I. T. Rekanos, “Reconstruction of One-Dimensional Dielectric Scatterers Using Differential Evolution and Particle Swarm Optimization,” IEEE Geoscience and Remote Sensing Letters, Vol. 6, No. 4, pp. 671-675, Oct. 2009.
    連結:
  55. [63] C. C. Chiu and W. C. Hsiao “Comparison of Asynchronous Particle Swarm Optimization and Dynamic Differential Evolution for Partially Immersed Conductor.” Waves in Random and Complex Media. Vol. 21, No.3, pp. 485-500, Aug. 2011.
    連結:
  56. [64] S. K. Goudos, K. Siakavara, T. Samaras, E. E. Vafiadis, and J. N. Sahalos, “Self-Adaptive Differential Evolution Applied to Real-Valued Antenna and Microwave Design Problems,” IEEE Transactions on Antennas and Propagation. Vol. 59, No. 4, pp. 1286-1298, Apr. 2011.
    連結:
  57. [65] Brest, J., S. Greiner, B. Boskovic, M. Mernik, and V. Zumer, “Self-adapting control parameters in differential evolution: comparative study on numerical benchmark problems, ” IEEE Transactions on Evolutionary Computation, Vol. 10, No. 6, 646-657, Dec. 2006.
    連結:
  58. [66] N. Dib, S. K. Goudos and H. Muhsen, “Application of Taguchi's Optimization Method and Self-Adaptive Differential Evolution to the Synthesis of Linear Antenna Arrays, ” Progress In Electromagnetics Research, PIER 102, pp. 159-180, Dec. 2010.
    連結:
  59. [67] .J. P. Benerger, “A perfectly matched layer for the absorption of electromagnetic waves,”Journal of Computational Physics, vol. 114, pp 185-200, 1994.
    連結:
  60. [68] Z. S Sacks, D. M. Kingsland, R. Lee, and J. F. Lee, “A perfectly matched anisotropic absorber for use as absorbing boundary condition,” IEEE Transactions on Antennas and Propagation, vol. 43, pp 1460- 1463, Dec. 1995.
    連結:
  61. [70] M. W. Chevalier, R. J.Luebbers and V. P. Cable, “FDTD local grid with material traverse,” IEEE Transactions on Antennas and Propagation, vol. 45, no. 3, March 1997.
    連結:
  62. [74] M. Clerc, J. Kennedy, “The particle swarm-explosion, stability, and convergence in a multidimensional complex space,” IEEE Transactions on Evolutionary Computation, vol. 6, issue 1. pp. 58~73, 2002.
    連結:
  63. [76] T. Huang and A. S. Mohan, “A hybrid boundary condition for robust particle swarm optimization,” IEEE Antennas and Wireless Propagation Letters, vol. 4, pp. 112-117, 2005.
    連結:
  64. [77] A. Qing and C. K. Lee, Differential Evolution in Electromagnetics, Springer Verlag; 2010.
    連結:
  65. [78] C. de Boor, A Practical Guide to Splines, Springer-Verlag, New York, 1978.
    連結:
  66. [23] A. Massa, D. Franceschini, G. Franceschini, M. Pastorino, M. Raffetto, and M. Donelli, “Parallel GA-Based Approach for Microwave Imaging Applications,” IEEE Transaction on Antennas and Propagation, Vol. 53, No. 10, pp. 3118 - 3127, Oct. 2005.
  67. [42] M. A. Strickel, A. Taflove, and K. R. Umashankar, “Finite-difference time-domain formulation of an inverse scattering scheme for remote sensing of conducting and dielectric targets,” Journal of Electromagnetic Waves and Applications, Vol. 8, pp.510-529, Jan. 1994.
  68. [49] M. Bertero and E. R. Pike, Inverse Problems in Scattering and Imaging, ser. Adam Hilger Series on Biomedical Imaging. Bristol, MA: Inst. Phys., 1992.
  69. [50] A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems. New York: Springer-Verlag, 1996.
  70. [51] A. M. Denisov, Elements of Theory of Inverse Problems. Utrecht, The Netherlands: VSP, 1999.
  71. [52] A. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control in evolutionary algorithms,”, IEEE Transactions on Evolutionary Computation, Vol. 3, No. 2, pp.124–141, Jul. 1999.
  72. [56] W. Chien, C. H. Sun and C. C. Chiu, “Inverse Problem of Multiple Objects Buried in a Half-space,” 2008 Progress In Electromagnetic Research, Beijing, March, 2009.
  73. [60] I.T. Rekanos, and A. Trochidis, "Shape reconstruction of two-dimensional acoustic obstacle using particle swarm optimization," Acta Acustica United with Acustica, vol. 93, no. 6, pp. 917-923, Nov.-Dec. 2007.
  74. [69] C. L. Li, C. W. Liu and S. H. Chen, “Optimization of a PML absorber's conductivity profile using FDTD,” Microwave and Optical Technology Letters, vol. 37 no. 5, pp. 69-73 , June 2003.
  75. [71] R. Storn, and K. Price, “Differential Evolution - a Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces,” Technical Report TR-95-012, International Computer Science Institute, Berkeley, 1995.
  76. [72] A. Qing, Differential Evolution: Fundamentals and Applications in Electrical Engineering, John Wiley & Sons Inc; 2009.
  77. [73] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” Proceedings of the IEEE International Conference on Neural Network, 1942-1948, 1995.
  78. [75] A. Carlisle and G. Dozier, “An off-the-shelf PSO,” Proc. of the Workshop on Particle Swarm Optimization, Indianapolis, April 2001.
Times Cited
  1. 賴品儒(2014)。應用等差田口優化法於超寬頻天線的設計。淡江大學電機工程學系碩士班學位論文。2014。1-76。 
  2. 倪嘉麟(2013)。一種結合直交表與響應表面模型於天線設計的創新方法。淡江大學電機工程學系碩士班學位論文。2013。1-101。