Title

全球期貨投資組合交易策略分析

Translated Titles

An Analysis of Global Futures Portfolios Trading Strategies

DOI

10.6846/TKU.2015.00839

Authors

張恪清

Key Words

期貨投資組合 ; 交易策略 ; 移動平均線 ; 投資組合理論 ; 動態資產配置 ; Futures Portfolio ; Trading Strategy ; Moving Average ; Portfolio Theory ; Dynamic Asset Allocation

PublicationName

淡江大學財務金融學系碩士班學位論文

Volume or Term/Year and Month of Publication

2015年

Academic Degree Category

碩士

Advisor

李命志

Content Language

繁體中文

Chinese Abstract

本研究從技術分析和資產配置的角度,分別以允許多空操作的移動平均線法則及最適配置權重的投資組合理論探討全球期貨投資組合的交易策略,並將其策略績效與簡單買進持有至到期策略比較。研究對象包括美國標準普爾500指數期貨、美國10年期公債期貨、美元指數期貨、黃金期貨及輕原油期貨五個期貨商品的收盤價日資料,樣本期間為2007年1月2日至2013年6月28日。 實證結果顯示,無論是技術分析交易策略還是資產配置交易策略(固定權重及動態調整權重),其績效均不如買進持有至到期策略。而在所有資產配置交易策略中,固定權重按季調整的最適投資組合策略績效最好。對比動態權重調整策略及對應調整頻率的固定權重調整策略,除動態權重按月調整策略績效優於固定權重按月調整策略績效外,其按季度及按半年調整策略的績效均不如固定權重按季度及按半年調整策略的績效。

English Abstract

This thesis examines trading strategies about global futures portfolio based on moving average rule (shorting is allowed) and portfolio theory separately, from the perspective of technical analysis and asset allocation, and compares the performance with simple buy and hold strategy. Our sample includes the daily data of futures close price of S&P500, 10-year T-Bond of America, US Dollar Index, gold and crude oil. The sample period covers from January 2, 2007 to June 28, 2013. The empirical results imply that technical analysis and asset allocation trading models all underperform simple buy and hold strategy. Among all the asset allocation trading models, the performance of constant weights strategy with quarterly rebalance is the best. Comparing the performance of dynamic weights strategies with constant weights strategies, only dynamic monthly rebalance strategy outperform constant monthly rebalance strategy, dynamic quarterly and half-year rebalance strategies all underperform constant quarterly and half-year rebalance strategies.

Topic Category 商管學院 > 財務金融學系碩士班
社會科學 > 財金及會計學
Reference
  1. 1. 陳信宏、蔡憲唐、韋伯韜與吳俊德(2005),醫療作業基金資産配置與風險值之研究,亞太經濟管理評論,8(2),129-146。
    連結:
  2. 2. 陳淑玲、吳安琪與費業勳(2011),臺灣股票市場技術指標之研究—不同頻率資料績效比較,東海管理評論,12(1),187-226。
    連結:
  3. 3. 許晉雄、鄒慶士、葉柏緯(2009),均值-風險投資組合模式之分析與比較: 常態與非常態資料,文大商管學報,14(2),71-98。
    連結:
  4. 4. 許江河與許淑斐(2012),投資組合持股調整與績效之實証研究-以台灣 50 成分股為例,國立虎尾科技大學學報,30(4),27-38。
    連結:
  5. 5. 許溪南、何怡滿與張瓊如(2012),KD與MA技術指標在避險時機之應用: 以台指選擇權為例,輔仁管理評論,19(1),27-46。
    連結:
  6. 6. 張宮熊與呂維恭(2006),應用灰色系統理論改善最小變異數投資組合績效之實證模型-以道瓊 30 指數成份股為例,亞太經濟管理評論, 9(2),61-74。
    連結:
  7. 7. 黃彥聖(1995),移動平均法的投資績效,管理評論,14(1),47-68。
    連結:
  8. 8. 傅英芬與劉海清(2008),台灣股市產業動能現象之研究與交易策略之應用,臺南科大學報 (人文管理),(27),267-280。
    連結:
  9. 9. 趙淵博(2009),共同基金投資組合之研究-以金磚四國股票型基金為例,管理科學與統計決策,6(1),68-79。
    連結:
  10. 10. 劉海清、傅英芬與陳美錞(2011),紀律投資應用於期貨操作之損益與風險管控分析,東吳經濟商學學報,(74),1-26。
    連結:
  11. 11. 樓禎祺與何培基(2003),股價移動平均線之理論與實證-以台灣股市模擬投資操作為例,育達研究叢刊,(5-6),27-52。
    連結:
  12. 2. Abbad, J., Fardousi, B., and Abbad, M. (2014), Advantages of using technical analysis to predict future prices on the Amman stock exchange, International Journal of Business and Management, 9(2), 1-16.
    連結:
  13. 3. Ayub, U., Shah, S. Z. A., and Abbas, Q. (2015), Robust analysis for downside risk in portfolio management for a volatile stock market, Economic Modelling, 44, 86-96.
    連結:
  14. 4. Brock, W., Lakonishok, J., and LeBaron, B. (1992), Simple technical trading rules and the stochastic properties of stock returns, The Journal of Finance, 47(5), 1731-1764.
    連結:
  15. 5. Behr, P., Guettler, A., and Miebs, F. (2013), On portfolio optimization: Imposing the right constraints, Journal of Banking & Finance, 37, 1232-1242.
    連結:
  16. 6. Ellis, C. A., and Parbery, S. A. (2005), Is smarter better? A comparison of adaptive, and simple moving average trading strategies, Research in International Business and Finance, 19(3), 399-411.
    連結:
  17. 7. Fong, W. M., and Yong, L. H. (2005), Chasing trends: recursive moving average trading rules and internet stocks, Journal of Empirical Finance, 12(1), 43-76.
    連結:
  18. 8. Gunasekarage, A., and Power, D. M. (2001), The profitability of moving average trading rules in South Asian stock markets, Emerging Markets Review, 2(1), 17-33.
    連結:
  19. 9. Galvani, V., and Gubellini, S. (2013), Mean–variance dominant trading strategies, Finance Research Letters, 10, 142-150.
    連結:
  20. 10. Hjalmarsson, E., and Manchev, P. (2012), Characteristic-based mean-variance portfolio choice, Journal of Banking & Finance, 36, 1392-1401.
    連結:
  21. 11. Hsu, P. P., and Liao, S. L. (2012), The portfolio strategy and hedging: A spectrum perspective on mean–variance theory, International Review of Economics & Finance, 22, 129-140.
    連結:
  22. 12. Jiang, C., Ma, Y., and An, Y. (2013), International portfolio selection with exchange rate risk: A behavioural portfolio theory perspective, Journal of Banking & Finance, 37, 648-659.
    連結:
  23. 13. Jacobs, H., Muller, S., and Weber, M. (2014), How should individual investors diversify? An empirical evaluation of alternative asset allocation policies, Journal of Financial Markets, 19, 62-85.
    連結:
  24. 14. Ko, K. C., Lin, S. J., Su, H. J., and Chang, H. H. (2014), Value investing and technical analysis in Taiwan stock market, Pacific-Basin Finance Journal, 26, 14-36.
    連結:
  25. 15. Kaboneka, P., Charles, W. M., and Mirau, S. (2014), Analysis of the effects of diversification for Dares Salaam stock exchange optimal portfolio, Applied and Computational Mathematics, 3(5), 205-216.
    連結:
  26. 16. Lai, M. M., and Lau, S. H. (2006), The profitability of the simple moving averages and trading range breakout in the Asian stock markets, Journal of Asian Economics, 17(1), 144-170.
    連結:
  27. 17. Markowitz, H. (1952), Portfolio selection, The Journal of Finance, 7(1), 77-91.
    連結:
  28. 18. Narayan, P. K., Narayan, S., and Sharma, S. S. (2013), An analysis of commodity markets: What gain for investors?, Journal of Banking & Finance, 37, 3878-3889.
    連結:
  29. 19. Pavlov, V., and Hurn, S. (2012), Testing the profitability of moving-average rules as a portfolio selection strategy, Pacific-Basin Finance Journal, 20(5), 825-842.
    連結:
  30. 21. Sharpe, W. F. (1964), Capital asset prices: A theory of market equilibrium under conditions of risk, The Journal of Finance, 19(3), 425-442.
    連結:
  31. 22. Sharpe, W. F. (1966), Mutual fund performance, Journal of Business, 119-138.
    連結:
  32. 24. Ulku, N., and Prodan, E. (2013), Drivers of technical trend-following rules' profitability in world stock markets, International Review of Financial Analysis,30, 214-229.
    連結:
  33. 25. Wang, L., An, H., Xia, X., Liu, X., Sun, X., and Huang, X. (2014), Generating moving average trading rules on the oil futures market with genetic algorithms, Mathematical Problems in Engineering, 20(10), 1-10.
    連結:
  34. 26. Yu, H., Nartea, G. V., Gan, C., and Yao, L. J. (2013), Predictive ability and profitability of simple technical trading rules: Recent evidence from Southeast Asian stock markets, International Review of Economics and Finance, 25, 356-371.
    連結:
  35. 27. Zhu, Y., and Zhou, G. (2009), Technical analysis: An asset allocation perspective on the use of moving averages, Journal of Financial Economics, 92(3), 519-544.
    連結:
  36. 參考文獻
  37. 一、中文文獻
  38. 二、英文文獻
  39. 1. Anghel, D. (2013), How reliable is the moving average crossover rule for an investor on the Romanian stock market?, The Review of Finance and Banking, 5(2), 89-115.
  40. 20. PhooiM’ng, J. C., and Zainudin, R. (2014), Predictability of Asia Pacific stock market indices using signals from a dynamic volatility indicator, adjustable moving average, Middle-East Journal of Scientific Research, 21(8), 1226-1231.
  41. 23. Talreja, P. (2014), Forecasting stock market trend using exponential moving average, European Journal of Business and Management, 6(17), 85-89.
Times Cited
  1. 謝佩瑾(2016)。期貨投資組合交易策略應用之研究。淡江大學財務金融學系碩士班學位論文。2016。1-60。