Title

巨分子溶液恆壓過濾行為之探討

Translated Titles

Investigation on Filtration Behavior of Macromolecules Solutions in Dead-end Filtration

DOI

10.6846/TKU.2007.00788

Authors

簡吟真

Key Words

恆壓過濾 ; 濾速下降 ; 蛋白質 ; 攪拌 ; pH值 ; Dead-end filtration ; Flux decline ; Protein ; Stirred ; pH value

PublicationName

淡江大學化學工程與材料工程學系碩士班學位論文

Volume or Term/Year and Month of Publication

2007年

Academic Degree Category

碩士

Advisor

鄭東文

Content Language

繁體中文

Chinese Abstract

本研究以恆壓過濾(dead-end)系統進行探討,使用OMEGA公司所生產之商業化高分子薄膜(1,000及5,000 Da MWCO),就溶液性質、薄膜特性及操作參數等進行過濾實驗,探討在不同操作參數(透膜壓差、濃度、pH值、溶液組成、攪拌速度)下對濾速、阻力與阻隔率的影響,並由理論模式定量本實驗系統的操作條件對阻力值之影響及分析理論濾速與實驗濾速之差異。 在BSA與β-cyclodextrin的混合溶液系統中,薄膜對β-cyclodextrin之阻隔率隨溶液pH值不同而有所改變,且加入攪拌可使阻隔率提高;以MWCO 5k薄膜為例,在攪拌系統下,pH=4.9時,β-cyclodextrin之阻隔率約為50%,而在pH=10時,則只有10%左右之阻隔率,這是因為BSA粒子形成之極化濾餅層緊密度不同所致。當未加入攪拌時,不論1k或5k薄膜,其β-cyclodextrin之阻隔率均近乎於零,但加入攪拌後1k薄膜之阻隔率皆高於90%。顯示改變BSA性質具有對β-cyclodextrin阻隔的效果,但也造成分離選擇性降低。 以滲透壓模式計算理論濾速,可發現理論與實驗濾速之趨勢相符,在高透膜壓差下,理論計算值有明顯緩升之趨勢,但實驗值隨壓力改變之濾速下降程度相當不明顯。這可能是在攪拌系統中所產生之剪應力對BSA產生的濃度極化之移除具有相當良好的效果,使濾速無明顯下降,且滲透壓模式只考慮膜面濃度提高對滲透壓所產生之效應而忽略薄膜結垢對濾速下降之影響,而使理論濾速與實驗濾速無法吻合。

English Abstract

In this study, commercialized polymer membranes(1,000 and 5,000 Da MWCO, OMEGA) were employed in a dead-end filtration system to investigate the effect of operation conditions, solutions and membrane properties on filtration. The solution fluxes, resistance and solute rejection were discussed under various operating parameters such as transmembrane pressure, concentration, pH value, solution composition and stirred velocity. In addition, the calculated filtration resistance by using resistance-in-series model and the predicting flux of BSA solution using the osmotic pressure model had been discussed. For BSA and β-cyclodextrin binary solution, the rejection of β-cyclodextrin varies with the pH value, and the rejection with stirring increases. In the case of MWCO 5k membrane, the rejection of β-cyclodextrin is approximately 50% at pH=4.9 and near 10% at pH=10. This is due to the fact that the porosity of the polarization layer of BSA on the membrane surface varies with pH value. No matter 1k or 5k membrane but without stirring, the rejection of β-cyclodextrin is near zero;However, in the stirring system, the rejection of β-cyclodextrin by the 1k membrane is higher than 90%. The result indicates that, the cake property of BSA layer has significant influence on the rejection of β-cyclodextrin, and lead to reducing separation selectivity. In osmotic pressure model, the trends of theoretical flux agree with experiment flux. At high transmembrane pressures, the theoretical flux apparently reached a plain, while the flux decline tendency was not obvious in the experiment. This is due to the shear stress caused by the stirring system can eliminate the concentration polarization layer of BSA effectively. The osmotic pressure model considers the osmotic pressure caused the concentration polarization layer but neglects the effect of membrane fouling on flux. Therefore, the theoretical flux is higher than the experimental data.

Topic Category 工學院 > 化學工程與材料工程學系碩士班
工程學 > 工程學總論
工程學 > 化學工業
Reference
  1. Aimar, P., J. A. Howell, M. J. Clifton, and V. Sanchez, "Concentration polarization build-up in hollow fibers: A method of measurement and its modelling in ultrafiltration," J. Membr. Sci., 59 (1991) 81-99.
    連結:
  2. Bauser, H., H. Chmiel, N. Stroh, E. Walitza, "Control of concentration polarization and fouling of membranes in medica, food and biotechnical application", J. Membr. Sci., 27 (1986) 195-202.
    連結:
  3. Blanpain,P., J. Hermia, M. Lenoel, "Mechanisms governing permeate flux and protein rejection in the microfiltration of beer with a Cyclopore membrane", J. Mem. Sci., 84 (1993), 37-51.
    連結:
  4. Blatt, W.F., A. Dravid, A.S. Michales, L. Nelsen, "Solute polarization and cake formation in membrane ultrafiltration: causes, consequences, and control techniques", in: J.E. Filnn, ed., Membrane Science and Technology, Plenum Press, New York (1970) 47-91.
    連結:
  5. Bowen, W.R., A.W. Mohammad, "Diafiltration by nanofiltration: prediction and optimization", AIChE J., 44 (1998) 1799-1812.
    連結:
  6. Bowen, W.R., A.W. Mohammad, N. Hilal, "Characterisation of nano -filtration membranes for predictive purposes-use of salts, uncharged solutes and atomic force microscopy", J. Membr. Sci., 126 (1997) 91-105.
    連結:
  7. Bowen, W.R., H. Mukhtar, "Charaterisation and prediction of separation performance of nanofiltration membranes", J. Membr. Sci., 112 (1996) 263-274.
    連結:
  8. Cabassud, C., E. Karim, D. Gaelle, L. Alain, "Spherical cap bubbles in a flat sheet nanofiltration module: experiments and numerical simulation", Chem. Eng. Sci., 56 (2001) 6321-6327.
    連結:
  9. Cabassud, C., S. Laborie, J.M. Laine, "How slug flow can improve ultra -filtration flux in organic hollow fibers", J. Membr. Sci., 128 (1997)93-101.
    連結:
  10. Chan, R., V. Chen, "The effects of electrolyte concentration and pH on protein aggregation and deposition: critical flux and constant flux membrane filtration," J. Membr. Sci., 185 (2001) 177-192
    連結:
  11. Cheryan, M., E.M. Tsui, "Characteristics of nanofiltration membrane in aqueous ethanol" J. Membr. Sci., 237 (2004) 61-69.
    連結:
  12. Chong, R., P. Jelen, W. Wang, "The effect of cleaning agents on a noncellulosic ultrafiltration membrane", Sep. Sci. Technol., 20 (1985) 393-402.
    連結:
  13. Cui, Z.F., K.I.T. Wright, "Gas-liquid two-phase crossflow ultrafiltration of BSA and dextran solution", J. Membr. Sci., 90 (1994) 183-189.
    連結:
  14. Davis, R.H., C. Güell, "Membrane fouling during microfiltration of protein mixtures ," J. Membr. Sci., 119 (1996) 269-284
    連結:
  15. Derzansky, L.J., W.N. Gill, "Mechanisms of brane-side mass transfer in a horizontal reverse osmosis tubular membrane", AIChE J., 20 (1974) 751-761.
    連結:
  16. Dorange, G., Y. Garba, S. Taha, N. Gondrexon, "Ion transport modelling through nanofiltration membrane", J. Membr. Sci., 160 (1999) 187-200.
    連結:
  17. Fane, A. G., C. J. D. Fell, A. Suki, "Effect of pH and ionic environment on the ultrafiltration of protein solutions with retentive membranes," J. Membr. Sci., 16 (1982) 195-210.
    連結:
  18. Garem, A., C. Martin-Orue, S. Bouhallab, "Nanofiltration of amino acid and peptide solution: mechanisms of separation", J. Membr. Sci., 142 (1998) 225-233.
    連結:
  19. Ghosh, R., Q. Li, Z.F. Cui, "Fractionation of BSA and lysozyme using ultrafiltration: effect of gas sparging", AIChE J., 44 (1998) 61-67.
    連結:
  20. Ghosh, R., Z.F. Cui, "Fractionation of BSA and lysozyme using ultra -filtration: effect of pH and membrane pretreatment", J. Membr. Sci., 139 (1998) 17-28.
    連結:
  21. Grib, H., M. Persin, C. Gavach, D.L. Piron, J. Sandeaux, N. Mameri, "Amino acid retention with alumina γnanofiltration membrane", J. Membr. Sci., 172 (2000) 9-17.
    連結:
  22. Gupta, B.B., J.A. Howell, D. Wu, R.W. Field, "A helical baffle for cross -flow microfiltration", J. Membr. Sci., 99 (1995) 31-42.
    連結:
  23. Gupta, B.B., P. Blanpain, M.Y. Jaffrin, "Permeate flux enhancement by pressure and flow pulsation in microfiltration with mineral membrane", J. Membr. Sci., 70 (1992) 257-266.
    連結:
  24. Hasson, D., R. Levenstein, R. Semiat, "Utilization of the Donnan effect for improving electrolyte separation with nanofiltration membranes", J. Membr. Sci., 116 (1996) 93-104.
    連結:
  25. Iritani, E.J., Y.T. Mukai, T.R. Murase, "Separation of binary protein mixtures by ultrafiltration", Filtration & Separation., 34 (1997) 967-973.
    連結:
  26. Jacob, J., P. Pradanos, J. I. Calvo, A. Hernandez and G. Jonsson, "Fouling kinetics and associated dynamics of structural modifications", Colloids and Surfaces A:Physicochemical and Eng. Aspects, 138 (1998) 173-183.
    連結:
  27. Karthik, V., S. DasGupta, S. De, "Modelling and simulation of osmotic pressure controlled electro-ultrafiltration in a cross-flow system", J. Membr. Sci., 199 (2002) 29-40
    連結:
  28. Kedem, O., A. Katchalsky, "A physical interpretation of the phenolmeno -logical coefficients of membrane permeability", J. Gen. Physiol., 45 (1961) 143-179.
    連結:
  29. Kelly, S.T., A.L. Zydney, "Effects of intermolecular thiol-disulfide inter -change reactions on BSA fouling during microfiltration", Biotechnol. Bioeng., 44 (1994) 972-982.
    連結:
  30. Kelly, S.T., A.L. Zydney, "Mechanisms for BSA fouling during micro -filtration", J. Membr. Sci., 107 (1995) 115-127.
    連結:
  31. Kelly, S.T., W.S. Opong, A.L. Zydney, "The influence of protein aggregates on the fouling of microfiltration membranes during stirred cell filtration", J. Mem. Sci., 80 (1993) 175-187.
    連結:
  32. Kilduff, J.E., S. Mattaraj, J.P. Pieracci, G. Belfort, "Photochemical modification of poly(ether sulfone) and sulfonated poly(sulfone) nanofiltration membrane for control of fouling by natural organic matter," Desalination, 132 (2000) 133-142
    連結:
  33. Kim, B.S., H.N. Chang, "Effects of periodic backflushing on ultra -filtration Performance", Bioseparation, 2 (1991) 9-23.
    連結:
  34. Kim, K. J., V. Chen, A. G. Fane, "Some factors determining protein aggregation during ultrafiltration", Biotechnol. Bioeng., 42 (1993) 260-265.
    連結:
  35. Kimura, S., S. Sourirajan, "Analysis of data in reverse osmosis with porous celluloses acetate membranes used", AIChE J., 13 (1967) 497-503.
    連結:
  36. Kroner, K.H., V. Nissinen, "Dynamic filtration of microbial suspensions using an axially rotating filter", J. Membr. Sci., 36 (1988) 85-100.
    連結:
  37. Mercier-Bonin, M., C. Fonade, C. Lafforgue-Delorme, "How slug flow can enhance the ultrafiltration flux in mineral tubular membrane", J. Membr. Sci., 128 (1997) 103-113.
    連結:
  38. Mika, M., P. Arto, K. Eero, N. Marianne, "Effect of temperature and membrane pre-treatment by pressure on the filtration properties of nanofiltration membranes", Desal., 145 (2002) 81-86.
    連結:
  39. Millward, H.R., B.J. Bellhouse, G. Walker, "Screw-thread flow promoters: an experimental study of ultrafiltration and microfiltration performance", J. Membr. Sci., 106 (1995) 269-279.
    連結:
  40. Morel, G., A. Gracina, J. Lachise, "Enhanced nitrate ultrafiltration by cationic surfactant", J. Membr. Sci., 56 (1991) 1-12.
    連結:
  41. Nabetani, H., M. Nakajima, A. Watanabe, S. Nakao, S. Kimura, "Effects of osmotic pressure and adsorption on ultrafiltration of ovalbumin", AIChE J., 36 (1990) 907-915.
    連結:
  42. Nakao, S., X.L. Wang, T. Tsuru, M. Togoh, S. Kimura, "Transport of organic electrolytes with electrostatic and sterichidrance effects through nanofiltration membranes", J. Chem. Eng. Jpn., 28 (1995) 372-380.
    連結:
  43. Nel, R.G., S.F. Oppenheim, V.G.J. Rodgers, "Effect of solution properties om solute permeate flux in bovine serum albumin-IgG ultrafiltration", Biotechnol. Prog., 10 (1994) 539-542.
    連結:
  44. Palecek, S.P., A.L. Zydney, "Hydraulic permeability of protein deposits formed during microfiltration: Effect of solution pH and ionic strength", J. Mem. Sci., 95 (1994) 71-81.
    連結:
  45. Palecek, S.P., A.L. Zydney, "Intermolecular electrostatic interactions and their effect on flux and protein deposition during protein filtration", Biotechnol. Prog., 10 (1994) 207-213.
    連結:
  46. Persson, A., A.-S. Jönsson, G. Zacchi, "Transmission of BSA during cross-flow microfiltration: influence of pH and salt concentration", J. Membr. Sci., 223 (2003) 11-21.
    連結:
  47. Philles, G.D., G.B. Benedek, N.A. Mazer, "Diffusion in protein solutions at high concentrations: a study by quasi-elastic light scattering spectroscopy", J. Chem. Phys., 65 (1976) 1883-1892
    連結:
  48. Rabiller-Baudry, M., B. Chaufer, D. Lucas, B. Bariou, P. Aimar, "Model of convection-diffusion-electrophoretic migration application to UF of lysozyme versus pH and ionic strength", in: proceedings of the international congress on international congress on membranes and membrane processes, Toronto, Canada, June (1999).
    連結:
  49. Taylor, G.I., "Stability of a viscous liquid contained between two rotating cylinders", Phil. Trans. Roy. Soc., A233 (1923) 298-343.
    連結:
  50. Tracey, E. M., R. H. Davis, "Protein fouling of track-etched polycarbonate microfiltration membranes", J .Colloid Interface Sci., 167 (1994) 104-116.
    連結:
  51. Tsuru, T., T. Shutou, S.I. Nakao, S. kimura, "Peptide and amino acid separation with nanofiltration membrane", Sep. Sci. Technol., 29 (1994) 971-984.
    連結:
  52. Van der Horst, H.C., J.M.K. Timmer, M.P.J. Speelmans, "Separation of amino acids by nanofiltration and ultrafiltration membranes", Sep. Purif. Technol., 14 (1998) 133-144.
    連結:
  53. Van Der Weal, M. J., I.G. Racz, "Mass transfer in corrugated-plate membrane Modules. I. Hyperfiltration Experiments", J. Membr. Sci., 40 (1989) 243-260.
    連結:
  54. Wang, X.L., W.N. Wang, A.L. Ying, "Nanofiltration of L-phenylalanine and L-aspartic acid aqueous solutions", J. Membr. Sci., 196 (2002) 59-67.
    連結:
  55. Wijers, M.C., Y. Pouliot, S.F. Gauthier, M. Pouliot, L. Nadeau, "Use of nanofiltration membranes for the desalting of peptide fractions from whey protein enzymatic hydrolysates", Lait., 78 (1998) 621-632.
    連結:
  56. Yang, X.J., A.G. Livingston,L. Freitas dos Santos, "Experimental observations of nanofiltration with organic solvents", J. Membr. Sci., 190 (2001) 45-55.
    連結:
  57. Yazhen, X., E.L. Remi, "Investigation of the solute separation by charged nanofiltration membrane: effect of pH, ion strength and solute type", J. Membr. Sci., 158 (1999) 93-104.
    連結:
  58. Youm, K.H., A.G. Fane, D.E. Wiley, "Effects of natural convection instability on membrane performance in dead-end and cross-flow ultrafiltration", J. Membr. Sci., 116 (1996) 229-241.
    連結:
  59. 陳沂仁, “高分子奈米薄膜過濾電解質溶液之探討”, 淡江大學化學工程與材料工程研究所碩士論文 (2005)
    連結:
  60. 李培銘, “無機薄膜過濾蛋白質溶液中結垢現象與濾速回復之探討”, 淡江大學化學工程與材料工程研究所碩士論文 (2006)
    連結:
  61. Cheryan, M., "Ultrafiltration and microfiltration hand book", 2nd ed., Technomic Publishing Company, Inc., Pennsylvania (1988)
  62. Geankoplis, C. J., "Transport processes and unit operations", Prentice -Hall International, London (1995).
  63. Mir, L., "Positive-charged Ultrafiltration membrane for the separation of cathodic/electrodeposition paint cimposition," U. S. Patent, 4 (1983) 412.
  64. Murkes, J., C.G. Carlsson, "Crossflow Filtration-Theory and Practice " John Wiley & Sons, New York (1988).
  65. 呂維明編著, “固液過濾技術”, 高立圖書有限公司 (2004).
  66. 邱東林, “奈米過濾對從巨分子溶液分離胺基酸與胜肽之探討”, 淡江大學化學工程與材料工程研究所碩士論文 (2003)
  67. 林家福, “陶瓷薄膜兩相流動超過濾系統中蛋白質溶液濃縮與濾速之探討”, 淡江大學化學工程與材料工程研究所碩士論文 (2004)