Title

自來水淨水廠高速膠凝澄清池之操作與結構改進

Translated Titles

A Construction Improvement and Operation in Water Treatment Blanket Clarifier

DOI

10.6846/TKU.2007.00817

Authors

楊文傑

Key Words

污泥毯 ; 澄清池 ; 計算流體力學 ; 二相流 ; sludge blanket ; clarifier ; CFD ; multiphase

PublicationName

淡江大學化學工程與材料工程學系碩士班學位論文

Volume or Term/Year and Month of Publication

2007年

Academic Degree Category

碩士

Advisor

吳容銘

Content Language

繁體中文

Chinese Abstract

研究內容是使用計算流體力學的FLUENT軟體,模擬板新淨水廠設備中的膠凝(反應)澄清池,首先建立澄清池的幾何結構和網格,並給與進水流速和濃度、葉輪旋轉和污泥毯層的操作條件,再使用Eulerian二相流模式,對淨水廠內的流場流動加以計算和分析。分別探討下列五種不同清況下的流場變化:一、葉輪不同轉速下的探討。二、不同進水濃度之影響。三、改變不同污泥毯層的濃度和高度。四、改變澄清池幾何結構。五、溫度變化的影響。藉由以上分析和計算的結果,以求得更良好的出水品質。 本研究的結果顯示,葉輪在高轉速下,易造成槽底污泥毯層結構的懸浮翻騰。當不同的進水濃度時,其差異只在起始狀態下的出口通量值有明顯不同,當時間越久則沒有明顯差異。污泥毯層的高度和濃度,均與固體通量值成正比關係。在幾何結構的變化中,可以發現反應罩角度越小,其膠羽顆粒在反應罩內的時間越久。在每日相同處理水量的條件下,當進水管徑變大,可以提供更良好的出水品質。最後,溫度的影響加強了流力的循環,因此,在夏季的高溫情形下,易造成處理水量的困難。

English Abstract

This study uses the software FLUENT(used for computational fluid dynamics) to simulate flocculation (reaction) clarifier blanket inside Bansin water treatment plant. We first establish the geometric structure and mesh of the clarifier blanket, then provide feed velocity, concentration, impeller rotation, and operation conditions for the sludge blanket. Then we use the Eulerian multiphased model to calculate and analyze the flow field inside the water treatment plant. Next we explore flow field alterations resulting from changes in these five following variables: impeller rotational velocity, feed concentration, sludge blanket concentration and height, clarifier blanket structure, and temperature. Using the above calculations and analysis, we hope to obtain better water quality.   This study shows that high impeller rotational velocity causes the sludge blanket structure on the bottom of the tank to float and turn easily. With varying feed concentration, the only significant difference is in the initial effluent solid mass flux; Changes become less observable as time goes on. The height and concentration of the sludge blanket both correspond directly to the solid mass flux. Regarding changes in the geometric structure, we find that the smaller the angle of the reaction well, the longer the solid particles stay in the reaction well. Under the condition of constant daily water-processing quantity, larger feed diameter leads to better water quality. Lastly, temperature increases flow dynamic circulation. Thus, high temperature during the summer may lead to difficulties in processing water quantity.

Topic Category 工學院 > 化學工程與材料工程學系碩士班
工程學 > 工程學總論
工程學 > 化學工業
Reference
  1. Annadurai, G., Sung, S. S., and Lee, D. J. “Floc characteristics and removal of turbidity and humic acid from high-turbidity storm water” Journal of Environmental Engineering, 129, 571-575 (2003).
    連結:
  2. Annadurai, G., Sung, S. S., and Lee, D. J. “Optimization of floc characteristics for treatment of highly turbid water” Separation Science and Technology, 39, 19-42 (2004a).
    連結:
  3. Annadurai, G., Sung, S. S., and Lee, D. J. “Simultaneous removal of turbidity and humic acid from high turbidity storm ater” Advances in Environmental Research, 8, 713-725 (2004b).
    連結:
  4. Armbruster, M., Krebs, P., and Rodi, W. “Numerical modelling of dynamic sludge blanket behaviour in secondary clarifiers”, Water Science and Technology, 43, 173-180 (2001).
    連結:
  5. Chatellier, P., Audic, J. M. “An empirical dynamic model for waste water treatment plant clarifier simulation”, Environmental Technology, 19, 725-731 (1998).
    連結:
  6. Chen, L. C., Sung, S. S., Lin, W. W., Huang, C., Juang, R. S., Chang, H. L. “Observations of blanket characteristics in full-scale floc blanket clarifiers”, Water Science and Technology, 47, 197-204 (2003).
    連結:
  7. Ekama, G. A., Marais, P. “Assessing the applicability of the 1D flux theory to full-scale secondary settling tank design with a 2D hydrodynamic model”, Water Research, 38, 495-506 (2004).
    連結:
  8. Eric, M. V., Amy, E. C., Menachem, E., Theodore, S. T., Mark, D. B. “Removing Particle and THM Precursors by Enhanced Coagulation”, Journal American Water Works Association, 90, 139-150 (1998).
    連結:
  9. Head, R., Hart, J., Graham, N. “Simulating the effect of blanket characteristics on the floc blanket clarification process”, Water Science and Technology, 36, 77-84 (1997).
    連結:
  10. Kan, C. C., Huang, C. P., Pan, J. R. “Time Requirement for Rapid-mixing in Coagulation”, Colloids and Surfaces A Physicochemical and Engineering Aspects, 203, 1-9 (2002).
    連結:
  11. Kawamura, S. “Integrated Design of Water Treatment Facilities”, John Wiley & Sons, NY., (1991)
    連結:
  12. Kimberly, B. A., Morteza, A., Eva, I., Debbie, V., Mark, L. “Conventional and Optimized Coagulation for NOM Removal”, Journal American Water Works Association, 92, 44-58 (2000)
    連結:
  13. Lakehal, D., Krebs, P., Krijgsman, J., Rodi, W. “Computing shear flow and sludge blanket in secondary clarifiers”, Journal of Hydraulic Engineering, 125, 253-262 (1999).
    連結:
  14. Li, D. H.; Ganczarcyk, J. J. “Stroboscopic determination of settling velocity, size and prorosity of activated sludge flocs”, Water Research., 21, 257-262 (1987).
    連結:
  15. Lin, W. W., Sung, S. S., Chen, L. C., Chung, H. Y., Wang, C. C., Wu, R. M., Lee, D. J., Huang, C. P., Juang, R. S., Peng, X. F., Chang, H. L. “Treating High-Turbidity Water Using Full-Scale Floc Blanket Clarifiers”, Journal of Environmental Engineering,130,1481-1487 (2004).
    連結:
  16. Lin, W. W., Sung, S. S., Lee, D. J., Chen, Y. P., Chen, D. S. “Coagulation of humic-kaolin-PACl aggregates”, Water Science and Technology, 47, 145-152 (2003).
    連結:
  17. Marhaba, T. F., Pipada, N. S. “Coagulation: Effectiveness in Removing Dissolved Organic Matter Fractions”, Environmental Engineering Science, 17,107-115 (2000)
    連結:
  18. Masschelein, W. J. “Unit Processes in Drinking Water Treatment”, Marcel Dekker, N.Y., (1992)
    連結:
  19. O’Melia, C. R., Becker, W. C., Au, K. K. “Removal of Humic Substances by Coagulation”, Water Science and Technology, 40, 47-54 (1999)
    連結:
  20. Stevenson, D. G. “Water Treatment Unit Process”, Imperial College Press., (1997)
    連結:
  21. Takacs, I., Patry, G. G., Nolasco, D. “A dynamic-model of the clarification thickening process”, Water Research, 25, 1263-1271 (1991)
    連結:
  22. 李宗浩,「自來水淨水廠高速膠凝澄清池之模擬」,碩士論文,淡江大學,台北(2005)
    連結:
  23. AWWA/ASCE “Water Treatment Plant Design.” Chap.7, McGraw-Hill, NY., (1990).
  24. De Clercq, J., Devisscher, M., Boonen, I., Vanrolleghem, P. A., Defrancq, J. “A new one-dimensional clarifier model - verification using full-scale experimental data”, Water Sciense and Technology, 47, 105-112 (2003).
  25. Edzwald, J. K., Ives, K. J., Janssens, J. G., McEwen, J. B., Wiesner, M. R. “Treatment Process selection for particle Removal”, Chap. 5, AWWRF/IWSA, NY., (1999).
  26. Gregory, J., “The role of colloid interactions in solid-liquid separation”, Water Science and Technology, 27, 1-17 (1993).
  27. Shin, W. K.; Chiang, C. U. “Treatment of hight turbidity water”, Preoceeding 4th international workshop on drinking water quality management and treatment technology, Taiwan, R.O.C, 112-116 (1998).
  28. 史午康,「高濁度水處理技術探討」,研究報告,台北(1998)。
  29. 甘其詮,「淨水場濁度去除效能評估及混凝監測之研究─以豐原淨水場為例」,碩士論文,國立交通大學,新竹(1996)。
  30. 林玉君,「以混凝-絮凝處理高濁度原水之研究」,碩士論文,國立台灣科技大學,台北,(2000)
  31. 翟雲珮,「飲用水水質標準適飲性項目之探討」,碩士論文,國立中興大學,台中(1999)。
  32. 中央氣象局颱風警報發布概況表。颱風資料庫。下載於04月20日2007年,網址:http://rdc28.cwb.gov.tw/data.php
Times Cited
  1. 溫鉦晏(2009)。淨水廠反應澄清池之模擬。淡江大學化學工程與材料工程學系碩士班學位論文。2009。1-111。