Translated Titles

Direct Singular Positions of the Tricept Robot





Key Words

並聯式機械手臂 ; 正向奇異位置 ; direct singular positions ; Tricept ; parallel manipulator



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract

本研究尋找出Tricept並聯式機械手臂的正向奇異位置。首先推導出較為簡單的3×3 Jacobian矩陣,並且利用此矩陣尋找此機構的正向奇異位置。針對任何一個活動平台方向,都必定會有至少一個活動平台伸長量,造成機構的正向奇異位置,而這伸長量可由3次多項式方程式解出。本文找出在活動平台工作空間之內,有2個區域的正向奇異位置會出現在無法到達的位置,因此當活動平台在此2個區域內時不必考慮正向奇異位置。

English Abstract

In this research the direct singular positions of the parallel manipulator Tricept are determined. An alternative 3×3 Jacobian matrix, simpler than the existing one, is obtained in this study. For a given moving platform’s orientation, the determinant of the Jacobian matrix may be expressed as a cubic polynomial in moving platform’s extension. Direct singular positions may thus be obtained by solving cubic polynomial equations. For an arbitrarily chosen moving platform’s orientation, there exists at least one moving platform’s extension that causes direct kinematic singularity. It is found that in two regions within the moving platform’s workspace direct kinematic singularities can only occur at positions impossible to reach.

Topic Category 工學院 > 機械與機電工程學系碩士班
工程學 > 機械工程
工程學 > 電機工程
  1. [1] Joshi, S., and Tsai, L.W., “A Comparison Study of Two 3-DOF Parallel Manipulators: One With Three and the Other With Four Supporting Legs”, IEEE Transactions on Robotics and Automation, Vol. 19, No. 2, pp. 200-209, 2003.
  2. [2] Joshi, S., and Tsai, L.W., “The Kinematics of a Class of 3-DOF, 4-Legged Parallel Manipulators”, ASME Journal of Mechanical Design, Vol. 125, pp. 52-60, March 2003.
  3. [3] Giddings & Lewis, Home page at http://www.giddings.com/
  4. [9] Siciliano, B., “The Tricept robot: Inverse kinematics, manipulability analysis and closed-loop direct kinematics algorithm”, Robotica, Vol. 17, pp. 437-445, 1999.
  5. [10] Gosselin, C., and Angeles, J., “Singularity Analysis of Closed-Loop Kinematic Chains”, IEEE Transactions of Robotics and Automation, Vol. 6, pp. 281-290, 1990.
  6. [12] Liu, C. H., and Cheng, S., "Direct Singular Positions of 3RPS Parallel Manipulators", ASME Journal of Mechanical Design, in print.
  7. [13] Joshi, S. A., and Tsai, L-W., “Jacobian Analysis of Limited-DOF Parallel Manipulators”, ASME Journal of Mechanical Design, Vol. 124, pp.254-258, 2002.
  8. [14] Tsai, L-W., and Joshi, S., “Kinematics and Optimization of a Spatial 3-UPU Parallel Manipulator”, ASME Journal of Mechanical Design, Vol. 122, pp.439-446, 2000.
  9. [15] Wang, J., and Gosselin, C. M., “Singularity Loci of a Special Class of Spherical 3-DOF Parallel Mechanisms With Prismatic Actuators”, ASME Journal of Mechanical Design, Vol. 126, pp.319-326, 2004.
  10. [16] Wang, J., and Gosselin, C. M., “Kinematic Analysis and Design of Kinematically Redundant Parallel Mechanisms”, ASME Journal of Mechanical Design, Vol. 126, pp.109-118, 2004.
  11. [4] Toyoda Machine Works, Home page at http://www.toyoda-kouki.co.jp
  12. [5] Comau, Home page at http://www.comau.com/
  13. [6] Neos Robotics, Home page at http://www.neosrobotics.com/
  14. [7] Baroncelli, A., “Il robot fa carriera” (in Italian), Automazione e Robotica, 14, (Oct., 1996).
  15. [8] Neumann, K. E., 2002, “Tricept Application,” Proc. of the 3rd Chemnitz Parallel Kinematics Seminar, pp.547-551, Zwickau, Germany.
  16. [11] Tsai, L-W., Robot Analysis : the Mechanics of Serial and Parallel Manipulators, John Wiley & Sons, Inc., New York, 1999.
  17. [17] Parviz, E.N., “Computer-Aided Analysis of Mechanical Systems”, Prentice-Hall International, 1988.
  18. [18] Spiegel, M. R., and Liu, J., “Mathematic Handbook of Formulas and Tables Second Edition”, McGraw-Hill, NY, 1999.