Title

利用TE極化波照射穿牆導體之成像研究

Translated Titles

Imaging of Through-Wall Conductors by Transverse Electric Wave Illumination

DOI

10.6846/TKU.2015.01114

Authors

辜偉翔

Key Words

穿牆成像 ; TE極化波 ; 逆散射 ; Inverse Scattering ; Through-Wall imaging ; SADDE

PublicationName

淡江大學電機工程學系碩士班學位論文

Volume or Term/Year and Month of Publication

2015年

Academic Degree Category

碩士

Advisor

丘建青

Content Language

繁體中文

Chinese Abstract

本論文使用自我適應之動態差異型演化法應用於TE極化波照射穿牆導體之逆散射問題。針對物體照射TE (Transverse Electric) 極化波在穿牆導體的逆散射進行探討。在此使用傅立葉級數展開及描述物體的形狀,利用在導體表面的邊界條件及在物體外部量測的散射場,可推導出非線性積分方程式。將散射場積分方程式透過動差法求得散射場相關資訊,藉由此散射場相關資訊與自我適應之動態差異型演化法,將逆散射問題轉化為求解最佳化問題,重建出穿牆導體之形狀。 對於自我適應之動態差異型演化法,在數值模擬顯示中,即使最初的猜測值與實際散射體的形狀相差甚遠,我們仍可求得不錯的形狀函數,成功的重建出物體的形狀。而且在數值模擬顯示中,量測的散射場即使加入高斯分布雜訊的存在,依然可以得到良好的重建結果,研究證實其有良好的抗雜訊能力。

English Abstract

This thesis presents an inverse scattering problem for recovering the shape of Through-Wall conducting cylinders behind the wall by self-adaptive dynamic differential evolution (SADDE). The Through-Wall conducting cylinders of unknown shapes are behind the wall and illuminated by the transverse electric (TE) plane wave from another space. Based on the boundary condition and the measured scattered field, the nonlinear integral equation is derived and the imaging problem is reformulated into optimization problem. The self-adaptive dynamic differential evolution is employed to find out the global extreme solution of the object function. Numerical results show that the shape of the conductors can be well reconstructed.

Topic Category 工學院 > 電機工程學系碩士班
工程學 > 電機工程
Reference
  1. [1] E. Wolf, “Three-dimensional structure determination of semi-transparentobjects from holographic data,” Opt. Commun., Vol. 1, pp.153–164, Sep.-Oct. 1969.
    連結:
  2. [2] O. Mudanyalı, S. Yıldız, O. Semerci, A. Yapar and I. Akduman, “A Microwave Tomographic Approach for Nondestructive Testing of Dielectric Coated Metallic Surfaces”, IEEE Geoscience and Remote Sensing Letters, Vol. 5, No. 2, pp. 180 - 184, Apr. 2008.
    連結:
  3. [3] S. Genovesi, E. Salerno, A. Monorchio and G. Manara, “Permittivity range profile reconstruction of multilayered structures from microwave backscattering data by using particle swarm optimization,” Microwave and Optical Technology Letters, Vol. 51, No. 10, pp. 2390 - 2394, Oct. 2009.
    連結:
  4. [4] T. Rubæk, O. S. Kim, P. Meincke, “Computational Validation of a 3-D Microwave Imaging System for Breast-Cancer Screening,” IEEE Transactions on Antennas and Propagation, vol. 57, No. 7, Jul. 2009.
    連結:
  5. [5] M. Klemm, J. A. Leendertz, D. Gibbins, I. J. Craddock, A. Preece, R. Benjamin, “Microwave Radar-Based Breast Cancer Detection: Imaging in Inhomogeneous Breast Phantoms” IEEE Antennas and Wireless Propagation Letters, Vol. 8, 2009.
    連結:
  6. [6] J. Bourqui, M. Okoniewski, E. C. Fear, “Balanced Antipodal Vivaldi Antenna With Dielectric Director for Near-Field Microwave Imaging.”, IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, Jul 2010.
    連結:
  7. [7] A. G. Ramm, “Uniqueness result for inverse problem of geophysics: I,” Inverse Problems, Vol. 6, pp. 635-641, Aug.1990.
    連結:
  8. [8] V. Isakov, “Uniqueness and stability in multidimensional inverse problems,” Inverse Problems, Vol. 9, pp. 579–621, 1993.
    連結:
  9. [9] O. M. Bucci and T. Isernia, “Electromagnetic inverse scattering: Retrievable information and measurement strategies,” Radio Sci., Vol. 32, pp. 2123–2138, Nov.–Dec. 1997.
    連結:
  10. [10] D. Colton and L. Paivarinta, “The uniqueness of a solution to an inverse scattering problem for electromagnetic waves,” Arc. Ration. Mech. Anal., Vol. 119, pp. 59–70, 1992.
    連結:
  11. [11] S. Caorsi, M. Donelli, D. Franceschini, and A. Massa, “A new methodology based on an iterative multiscaling for microwave imaging,” IEEE Transactions on Microwave Theory and Techniques, Vol. 51, no. 4, pp. 1162-1173, Apr. 2003.
    連結:
  12. [14] A. M. Denisov, Elements of Theory of Inverse Problems. Utrecht, The Netherlands: VSP, 1999.
    連結:
  13. [16] S. Boutami,; M. Fall, , “Calculation of Free-Space Periodic Green’s Function Using Equivalent Finite Array,” IEEE Transactions on Antennas and Propagation.,Vol. 60, pp.4725-4731,2012.
    連結:
  14. [17] D. S. Weile and E. Michielssen, “Genetic algorithm optimization applied to electromagnetics: a review ,” IEEE Transactions on Antennas and Propagation, Vol. 45, No. 3, pp. 343- 353, Mar. 1997.
    連結:
  15. [18] J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in electromagnetics,” IEEE Transactions on Antennas and Propagation, Vol. 52, No. 3, pp. 397–407, Feb. 2004.
    連結:
  16. [19] P. Rocca, G. Oliveri, and A. Massa,“Differential Evolution as Applied to Electromagnetics ,” IEEE Antennas and Propagation Magazine, Vol. 53, No. 1, pp. 38–49, May. 2011.
    連結:
  17. [20] R. M. Lewis, "Physical optics inverse diffraction," IEEE Trans. Antennas Propagat., vol. 17, pp. 308-314, May 1969.
    連結:
  18. [21] N. N. Bojarski, "A survey of the physical optics inverse scattering identity," IEEE Trans. Antennas Propagat., vol. 30, pp. 980-989,Sept. 1982.
    連結:
  19. [22] T. H. Chu and N. H. Farhat, "Polarization effects in microwave diversity imaging of perfectly conducting cylinders," IEEE Trans. Antennas Propagar., vol.37, pp. 235-244, Feb. 1989.
    連結:
  20. [23] D. B. Ge, "A study of Lewis method for target-shape reconstruction," Inverse Problems, vol. 6, pp. 363-370, June 1990.
    連結:
  21. [24] D. Colton, H. Haddar and Piana," The linear sampling method in inverse electromagnetic scattering theory," Inverse Problems, vol. 19, pp. 105-137, December 2003.
    連結:
  22. [25] M. Brignone and M. Piana, " The use of constraints for solving inverse scattering problems: physical optics and the linear sampling method," Inverse Problems, vol. 21, pp. 207-222, February 2005.
    連結:
  23. [26] T. H. Chu and D. B. Lin, "Microwave diversity imaging of perfectly conducting objects in the near-field region," IEEE Trans. Microwave Theory Tech., vol. 39, pp. 480-487, Mar. 1991.
    連結:
  24. [28] Yazhou Wang, and Fathy, A.E. “Advanced System Level Simulation Platform for Three-Dimensional UWB Through-Wall Imaging SAR Using Time-Domain Approach” IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, No. 5, pp. 1986-2000, May. 2012.
    連結:
  25. [30] F. Soldovieri and R. Solimene “Through-Wall Imaging via a Linear Inverse Scattering Algorithm” IEEE Transactions on Geoscience and Remote Sensing, Vol. 4, No. 4, pp. 513-517, Oct. 2007.
    連結:
  26. [31] L. Li, W. Zhang, and F. Li “A Novel Autofocusing Approach for Real-Time Through-Wall Imaging Under Unknown Wall Characteristics” IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 1, pp. 423-431, Jan. 2010.
    連結:
  27. [32] Q. Huang, L. Qu, B. Wu, and G. Fang ” UWB Through-Wall Imaging Based on Compressive Sensing” IEEE Transactions on Geoscience and Remote Sensing,Vol. 48, No. 3, pp. 1408-1415, Mar. 2010.
    連結:
  28. [34] T. Moriyama, Z. Meng, and T. Takenaka, "Forward-backward time-stepping method combined with genetic algorithm applied to breast cancer detection", Microwave and Optical Technology Letters, Vol. 53, No. 2, pp.438-442, 2011.
    連結:
  29. [35] R. Persico, R. Bernini, and F. Soldovieri, “The Role of the Measurement Configuration in Inverse Scattering From Buried Objects Under the Born Approximation,” IEEE Transactions on Antennas and Propagation, Vol. 53, No.6, pp. 1875-1887, Jun. 2005.
    連結:
  30. [36] X. Chen, K. Huang and X.-B. Xu, “Microwave imaging of buried inhomogeneous objects using parallel genetic algorithm combined with FDTD method:” Progress In Electromagnetic Research. PIER 53, pp. 283-298, 2005.
    連結:
  31. [38] R A. Wildman and D S. Weile, “Greedy Search And A Hybrid Local Optimization/Genetic Algorithm For Tree-Based Inverse Scattering,” Microwave and Optical Technology Letters, Vol. 50, No. 3, pp. pp. 822-825, Mar. 2008.
    連結:
  32. [39] A. Saeedfar, and K. Barkeshli, “Shape reconstruction of three-dimensional conducting curved plates using physical optics, number modeling, and genetic algorithm, ” IEEE Transaction on Antennas and Propagation, Vol. 54, No. 9, 2497-2507, Sep. 2006.
    連結:
  33. [40] A. Semnani, I.T. Rekanos, M. Kamyab, T.G. Papadopoulos, “Two-Dimensional Microwave Imaging Based on Hybrid Scatterer Representation and Differential Evolution,” IEEE Transaction on Antennas and Propagation, Vol. 58, No. 10, pp. 3289 - 3298, Oct. 2010.
    連結:
  34. [41] A. Qing, “Dynamic differential evolution strategy and applications in electromagnetic inverse scattering problems,” IEEE Transactions on Geoscience and Remote Sensing, Vol 44, Issue 1, pp. 116 – 125, Jan. 2006.
    連結:
  35. [42] K. A. Michalski, “Electromagnetic Imaging of Circular-Cylindrical Conductors and Tunnels Using A Differential Evolution Algorithm,” Microwave and Optical Technology Letters, Vol. 27, No. 5, pp. 330 - 334, Dec. 2000.
    連結:
  36. [43] M. Dehmollaian, “Through-Wall Shape Reconstruction and Wall Parameters Estimation Using Differential Evolution,” IEEE Geoscience and Remote Sensing Letter, Vol. 8, 201-205, 2011.
    連結:
  37. [44] I. T. Rekanos, “Shape Reconstruction of a Perfectly Conducting Scatterer Using Differential Evolution and Particle Swarm Optimization,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 7, pp. 1967-1974, Jul. 2008.
    連結:
  38. [45] A. Semnani and M. Kamyab, “An Enhanced Hybrid Method for Solving Inverse Scattering Problems,” IEEE Transactions on Magentics, Vol. 45, No. 3, pp. 1534-1537, Mar. 2009.
    連結:
  39. [46] G. Franceschini, M. Donelli, R. Azaro and A. Massa, “Inversion of Phaseless Total Field Data Using a Two-Step Strategy Based on the Iterative Multiscaling Approach,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No.12, pp. 3527-3539, Dec. 2006.
    連結:
  40. [47] M. Donelli and A. Massa, ”Computational approach based on a particle swarm optimizer for microwave imaging of two-dimensional dielectric scatterers” IEEE Transactions on Microwave Theory and Techniques Vol. 53, Issue 5, pp.1761 – 1776, May 2005.
    連結:
  41. [48] T. Huang and A. S. Mohan,” Application of particle swarm optimization for microwave imaging of lossy dielectric objects” IEEE Transaction on Antennas and Propagation, Vol. 1B, pp.852 – 855, 2005.
    連結:
  42. [49] M. Donelli, G.. Franceschini, A. Martini and A. Massa,” An integrated multiscaling strategy based on a particle swarm algorithm for inverse scattering problems” IEEE Transactions on Geoscience and Remote Sensing, Vol 44, Issue 2, pp.298 – 312, Feb. 2006.
    連結:
  43. [50] M. Donelli, D. Franceschini, P. Rocca and A. Massa,” Three-Dimensional Microwave Imaging Problems Solved Through an Efficient Multiscaling Particle Swarm Optimization” IEEE Transactions on Geoscience and Remote Sensing, Vol 47, No. 5, pp.1467 – 1481, May. 2009.
    連結:
  44. [51] C. C. Chiu, C. H. Sun and W. L. Chang “Comparison of Particle Swarm Optimization and Asynchronous Particle Swarm Optimization for Inverse Scattering of a Two- Dimensional Perfectly Conducting Cylinder.”, International Journal of Applied Electromagnetics and Mechanics Vol. 35, No.4, pp. 249-261,Apr. 2011.
    連結:
  45. [52] Y. Xia, G. Feng and J. Wang, “A Novel Recurrent Neural Network for Solving Nonlinear Optimization Problems With Inequality Constraints”, IEEE Transactions on Neural Network, Vol. 19, No. 8, pp. 1340 – 1353, Aug. 2008.
    連結:
  46. [55] C. H. Sun and C. C. Chiu “Inverse Scattering of Dielectric Cylindrical Target Using Dynamic Differential Evolution and Self-Adaptive Dynamic Differential Evolution,” International Journal of RF and Microwave Computer-Aided Engineering, Vol. 23, Issue 5, pp. 579–585, Sept. 2013.
    連結:
  47. [56] C. C. Chiu, C. H. Sun, C. L. Li and C. H. Huang, “Comparative Study of Some Population-based Optimization Algorithms on Inverse Scattering of a Two- Dimensional Perfectly Conducting Cylinder in Slab Medium,” IEEE Transactions on Geoscience and Remote Sensing, vol. 51, pp. 2302–2315, Apr. 2013.
    連結:
  48. [12] M. Bertero and E. R. Pike, Inverse Problems in Scattering and Imaging, ser. Adam Hilger Series on Biomedical Imaging. Bristol, MA: Inst. Phys., 1992.
  49. [13] A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems. New York: Springer-Verlag, 1996.
  50. [15] A. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control in evolutionary algorithms,”, IEEE Transactions on Evolutionary Computation, Vol. 3, No. 2, pp.124–141, Jul. 1999.
  51. [27] R. Solimene, F. Soldovieri, G. Prisco, and R. Pierri “Three-Dimensional Through-Wall Imaging Under Ambiguous Wall Parameters,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 5, pp. 1310-1317, May. 2009.
  52. [29] F. Soldovieri, R. Solimene, and G. Prisco ” A Multiarray Tomographic Approach for Through-Wall Imaging” IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 4, pp. 1192-1199, Apr. 2008.
  53. [33] R. F. Harrmgton, Field Computation by Moment Method, New York: Macmillan, 1968.
  54. [37] A. Massa, D. Franceschini, G. Franceschini, M. Pastorino, M. Raffetto, and M. Donelli, “Parallel GA-Based Approach for Microwave Imaging Applications,” IEEE Transaction on Antennas and Propagation, Vol. 53, No. 10, pp. 3118 - 3127, Oct. 2005.
  55. [53] A. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control in evolutionary algorithms,”, IEEE Transactions on Evolutionary Computation, Vol. 3, No. 2, pp.124–141, Jul. 1999.
  56. [54] R. Storn, and K. Price, “Differential Evolution - a Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces,” Technical Report TR-95-012, International Computer Science Institute, Berkeley, 1995.