Title

MiR-21會誘發miR-184抑制CDC25A和c-MYC之表現促進非小細胞肺癌腫瘤惡化

Translated Titles

MiR-184 Deregulated by the MiR-21 Promotes Tumor Malignancy and Poor Outcomes in Non-small Cell Lung Cancer via Targeting CDC25A and c-Myc

Authors

林倉祺

Key Words

非小細胞肺癌 ; 微小RNA-184 ; 微小RNA-21 ; 細胞侵襲 ; NSCLC ; micro-RNA-184 ; micro-RNA-21 ; Invasion

PublicationName

中山醫學大學醫學研究所學位論文

Volume or Term/Year and Month of Publication

2016年

Academic Degree Category

博士

Advisor

周明智;李輝

Content Language

繁體中文

Chinese Abstract

景. 已知微小RNA-184 (miR-184)在人類癌症之發展具有雙重角色。但miR-184在非小細胞肺癌(Non-small cell lung cancer, SCLC)之角色仍不清楚。 方法. 分別構築wild-type和mutant CDC25A報導基因質體以驗證miR-184是否在後轉錄層次影響CDC25A表現,以及利用 Boyden chamber分析miR-184是否透過CDC25A 和c-Myc而影響細胞侵襲能力。以定量PCR方式分析124個非小細胞肺癌檢體中miR-184、miR-21、PDCD4、c-Myc、CDC25A mRNA之表現,以Kaplan-Meier和Cox regression統計分析這些基因表現對臨床肺癌病人存活率(Overall survival, OS)和無復發存活率(Relapse-free survival, RFS)之影響。 結果. MiR-184 會結合CDC25A 編碼區(coding region)造成CDC25A mRNA不穩定而抑制其表現,反之,降低miR-184會使CDC25A表現量和細胞侵襲能力增強。MiR-21/PDCD4會引起miR-184表現量降低,造成CDC25A和c-Myc表現增加,而促進肺癌細胞之侵襲能力。肺癌患者miR-184表現量和miR-21、CDC25A、 c-Myc mRNA負相關性,但和PDCD4 mRNA呈現正相關性。肺癌病患High-CDC25A或high-c-Myc mRNA 相較於對照組 (Low-CDC25A或Low-c-Myc),有較短存活率(OS)和無復發存活率(RFS)。患者具有low-miR-184/high-CDC25A/high-c-Myc 腫瘤有最差的存活率,其次依序為low-miR-184 /high-CDC25A、low-miR-184/high-c-Myc、high-c-Myc、high-CDC25A。 結論. MiR-184在非小細胞肺癌扮演抑癌角色,會經由抑制 CDC25A和c-Myc表現,而抑制腫瘤細胞之增生和侵襲,因此miR-184表現量低的非小細胞肺癌患者可能有較差的臨床預後。

English Abstract

Background. MicroRNA (miR)-184 has been reported to have a dual role in human cancers. However, the role of miR-184 in non-small cell lung cancer (NSCLC) remains unclear. Methods. Wild-type or mutant CDC25A promoters were constructed by PCR and site-directed mutagenesis to verify whether miR-184 could inhibit CDC25A expression at post-transcription level. Boyden chamber assay was used to assess whether miR-184 could modulate cell invasiveness via targeting CDC25A and c-Myc. We utilized 124 tumors from NSCLC patients to determine miR-184, miR-21, PDCD4 mRNA, c-Myc mRNA, and CDC25A mRNA expression levels by means of real-time PCR analysis. The prognostic value of CDC25A, c-Myc, and miR-184 on overall survival (OS) and relapse-free survival (RFS) was evaluated by Kaplan–Meier and Cox regression analysis. Results. MiR-184 suppressed CDC25A expression by enhancing the instability of its mRNA as a result of miR-184 binding to its coding region. An increase in CDC25Aexpression by means of a reduction in miR-184 promotes cell invasiveness. Moreover, a concomitant increase in CDC25A and c-Myc expression as a result of decreased miR-184 via the miR-21-mediated PDCD4 reduction is responsible for cell invasiveness. Among patients, miR-184 expression in lung tumors was found to correlate negatively with CDC25A mRNA, c-Myc mRNA, and miR-21 expression, but was positively related to PDCD4 mRNA expression. High-CDC25A, or high-c-Myc mRNA tumors exhibited shorter OS and RFS periods than their counterparts. The worst OS and RFS were observed in low-miR-184/high-CDC25A/high-c-Myc tumors, followed by low-miR-184 /high-CDC25A, low-miR-184/high-c-Myc, high-c-Myc, and high-CDC25A tumors. Conclusions. MiR-184 as a tumor suppressor miR inhibits cell proliferation and invasion capability via targeting CDC25A and c-Myc. Low miR-184 level may predict worse prognosis in NSCLC patients.

Topic Category 醫藥衛生 > 醫藥總論
醫學院 > 醫學研究所
Reference
  1. Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S, Allgayer H. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene. 2008; 27 (15): 2128-36.
    連結:
  2. Bertero T, Gastaldi C, Bourget-Ponzio I, Mari B, Meneguzzi G, Barbry P, Ponzio G, Rezzonico R. CDC25A targeting by miR-483-3p decreases CCND-CDK4/6 assembly and contributes to cell cycle arrest. Cell Death Differ. 2013; 20 (6): 800-11.
    連結:
  3. Bonci D, Coppola V, Musumeci M, Addario A, Giuffrida R, Memeo L, D'Urso L, Pagliuca A, Biffoni M, Labbaye C, Bartucci M, Muto G, Peschle C, De Maria R. The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med. 2008; 14 (11): 1271-7.
    連結:
  4. Bui TV, Mendell JT. Myc: Maestro of MicroRNAs. Genes Cancer. 2010; 1 (6): 568-575.
    連結:
  5. Chang TC, Zeitels LR, Hwang HW, Chivukula RR, Wentzel EA, Dews M, Jung J, Gao P, Dang CV, Beer MA, Thomas-Tikhonenko A, Mendell JT. Lin-28B transactivation is necessary for Myc-mediated let-7 repression and proliferation. Proc Natl Acad Sci U S A. 2009; 106 (9): 3384-9.
    連結:
  6. Chen PM, Cheng YW, Wang YC, Wu TC, Chen CY, Lee H. Up-regulation of FOXM1 by E6 oncoprotein through the MZF1/NKX2-1 axis is required for human papillomavirus-associated tumorigenesis. Neoplasia. 2014; 16 (11): 961-71.
    連結:
  7. Chen BJ, Wu YL, Tanaka Y, Zhang W. Small molecules targeting c-Myc oncogene: promising anti-cancer therapeutics. Int J Biol Sci. 2014; 10 (10): 1084-96.
    連結:
  8. Wnt/β-catenin signaling in lung cancer. Oncotarget. 2015; 6 (17): 15022-34.
    連結:
  9. Chen Y, Knösel T, Kristiansen G, Pietas A, Garber ME, Matsuhashi S, Ozaki I, Petersen I. Loss of PDCD4 expression in human lung cancer correlates with tumour progression and prognosis. J Pathol. 2003; 200 (5): 640-6.
    連結:
  10. Cheng YW, Wu TC, Chen CY, Chou MC, Ko JL, Lee H. Human telomerase reverse transcriptase activated by E6 oncoprotein is required for human papillomavirus-16/18-infected lung tumorigenesis. Clin Cancer Res. 2008; 14 (22): 7173-9.
    連結:
  11. Conacci-Sorrell M, Ngouenet C, Anderson S, Brabletz T, Eisenman RN. Stress-induced cleavage of Myc promotes cancer cell survival. Genes Dev. 2014; 28 (7): 689-707.
    連結:
  12. Davis BN, Hilyard AC, Nguyen PH, Lagna G, Hata A. Smad proteins bind a conserved RNA sequence to promote microRNA maturation by Drosha. Mol Cell. 2010; 39 (3): 373-84.
    連結:
  13. Dykxhoorn DM. MicroRNAs and metastasis: little RNAs go a long way. Cancer Res. 2010; 70 (16): 6401-6.
    連結:
  14. Feng X, Wu Z, Wu Y, Hankey W, Prior TW, Li L, Ganju RK, Shen R, Zou X. Cdc25A regulates matrix metalloprotease 1 through Foxo1 and mediates metastasis of breast cancer cells. Mol Cell Biol. 2011; 31 (16): 3457-71.
    連結:
  15. Fidias P, Novello S. Strategies for prolonged therapy in patients with advanced non-small-cell lung cancer. J Clin Oncol. 2010; 28 (34): 5116-23.
    連結:
  16. Gibbons DL, Lin W, Creighton CJ, Rizvi ZH, Gregory PA, Goodall GJ, Thilaganathan N, Du L, Zhang Y, Pertsemlidis A, Kurie JM. Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR-200 family expression. Genes Dev. 2009; 23 (18): 2140-51.
    連結:
  17. Gilmore TD. Introduction to NF-kappaB: players, pathways, perspectives. Oncogene. 2006; 25 (51): 6680-4.
    連結:
  18. Gupta GP, Perk J, Acharyya S, de Candia P, Mittal V, Todorova-Manova K, Gerald WL, Brogi E, Benezra R, Massagué J. ID genes mediate tumor re-initiation during breast cancer lung metastasis. Proc Natl Acad Sci U S A. 2007; 104 (49): 19506-11.
    連結:
  19. Iliopoulos D, Jaeger SA, Hirsch HA, Bulyk ML, Struhl K. STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol Cell. 2010; 39 (4): 493-506.
    連結:
  20. Korpal M, Lee ES, Hu G, Kang Y. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem. 2008; 283 (22): 14910-4.
    連結:
  21. Langley RR, Fidler IJ. The seed and soil hypothesis revisited--the role of tumor-stroma interactions in metastasis to different organs. Int J Cancer. 2011; 128 (11): 2527-35.
    連結:
  22. Lankat-Buttgereit B, Göke R. The tumour suppressor Pdcd4: recent advances in the elucidation of function and regulation. Biol Cell. 2009; 101 (6): 309-17.
    連結:
  23. Lee SO, Masyuk T, Splinter P, Banales JM, Masyuk A, Stroope A, Larusso N. MicroRNA15a modulates expression of the cell-cycle regulator Cdc25A and affects hepatic cystogenesis in a rat model of polycystic kidney disease. J Clin Invest. 2008 Nov;118(11):3714-24.
    連結:
  24. Li B, Ren S, Li X, Wang Y, Garfield D, Zhou S, Chen X, Su C, Chen M, Kuang P, Gao G, He Y, Fan L, Fei K, Zhou C, Schmit-Bindert G. MiR-21 overexpression is associated with acquired resistance of EGFR-TKI in non-small cell lung cancer. Lung Cancer. 2014; 83 (2): 146-53.
    連結:
  25. Lin TC, Lin PL, Cheng YW, Wu TC, Chou MC, Chen CY, Lee H. MicroRNA-184 Deregulated by the MicroRNA-21 Promotes Tumor Malignancy and Poor Outcomes in Non-small Cell Lung Cancer via Targeting CDC25A and c-Myc. Ann Surg Oncol. 2015; 22 Suppl 3: S1532-9.
    連結:
  26. Liu Z, Luo W, Zhou Y, Zhen Y, Yang H, Yu X, Ye Y, Li X, Wang H, Jiang Q, Zhang Y, Yao K, Fang W. Potential tumor suppressor NESG1 as an unfavorable prognosis factor in nasopharyngeal carcinoma. PLoS One. 2011; 6 (11): e27887.
    連結:
  27. Liu Z, Mai C, Yang H, Zhen Y, Yu X, Hua S, Wu Q, Jiang Q, Zhang Y, Song X, Fang W. Candidate tumour suppressor CCDC19 regulates miR-184 direct targeting of C-Myc thereby suppressing cell growth in non-small cell lung cancers. J Cell Mol Med. 2014; 18 (8): 1667-79.
    連結:
  28. Ma Y, Xia H, Liu Y, Li M. Silencing miR-21 sensitizes non-small cell lung cancer A549 cells to ionizing radiation through inhibition of PI3K/Akt. Biomed Res Int. 2014; 2014: 617868.
    連結:
  29. Machesky LM, Li A. Fascin: Invasive filopodia promoting metastasis. Commun Integr Biol. 2010; 3 (3): 263-70.
    連結:
  30. Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T. MicroRNA-21regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 2007; 133 (2): 647-58.
    連結:
  31. Niu J, Shi Y, Tan G, Yang CH, Fan M, Pfeffer LM, Wu ZH. DNA damage induces NF-κB-dependent microRNA-21 up-regulation and promotes breast cancer cell invasion. J Biol Chem. 2012; 287 (26): 21783-95.
    連結:
  32. Pereg Y, Liu BY, O'Rourke KM, Sagolla M, Dey A, Komuves L, French DM, Dixit VM. Ubiquitin hydrolase Dub3 promotes oncogenic transformation by stabilizing Cdc25A. Nat Cell Biol. 2010; 12 (4): 400-6.
    連結:
  33. Perlikos F, Harrington KJ, Syrigos KN. Key molecular mechanisms in lung cancer invasion and metastasis: a comprehensive review. Crit Rev Oncol Hematol. 2013; 87 (1): 1-11.
    連結:
  34. Rapp UR, Korn C, Ceteci F, Karreman C, Luetkenhaus K, Serafin V, Zanucco E, Castro I, Potapenko T. MYC is a metastasis gene for non-small-cell lung cancer. PLoS One. 2009; 4 (6): e6029.
    連結:
  35. Ray D, Kiyokawa H. CDC25A phosphatase: a rate-limiting oncogene that determines genomic stability. Cancer Res. 2008; 68 (5): 1251-3.
    連結:
  36. Reck M, Popat S, Reinmuth N, De Ruysscher D, Kerr KM, Peters S; ESMO Guidelines Working Group. Metastatic non-small-cell lung cancer (NSCLC): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2014; 25 Suppl 3: iii27-39.
    連結:
  37. Riaz SP, Lüchtenborg M, Coupland VH, Spicer J, Peake MD, M?ller H. Trends in incidence of small cell lung cancer and all lung cancer. Lung Cancer. 2012; 75 (3): 280-4.
    連結:
  38. Riihimäki M, Hemminki A, Fallah M, Thomsen H, Sundquist K, Sundquist J, Hemminki K. Metastatic sites and survival in lung cancer. Lung Cancer. 2014; 86 (1): 78-84.
    連結:
  39. Seike M, Goto A, Okano T, Bowman ED, Schetter AJ, Horikawa I, Mathe EA, Jen J, Yang P, Sugimura H, Gemma A, Kudoh S, Croce CM, Harris CC. MiR-21 is an EGFR-regulated anti-apoptotic factor in lung cancer in never-smokers. Proc Natl Acad Sci U S A. 2009; 106 (29): 12085-90.
    連結:
  40. Sodir NM, Swigart LB, Karnezis AN, Hanahan D, Evan GI, Soucek L. Endogenous Myc maintains the tumor microenvironment. Genes Dev. 2011; 25 (9): 907-16.
    連結:
  41. Sung WW, Wang YC, Lin PL, Cheng YW, Chen CY, Wu TC, Lee H. IL-10 promotes tumor aggressiveness via upregulation of CIP2A transcription in lung adenocarcinoma. Clin Cancer Res. 2013; 19 (15): 4092-103.
    連結:
  42. Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature. 2008; 455 (7216): 1124-8.
    連結:
  43. Tung MC, Lin PL, Cheng YW, Wu DW, Yeh SD, Chen CY, Lee H. Reduction of microRNA-184 by E6 oncoprotein confers cisplatin resistance in lung cancer via increasing Bcl-2. Oncotarget. 2016.
    連結:
  44. Wang P, Zou F, Zhang X, Li H, Dulak A, Tomko RJ Jr, Lazo JS, Wang Z, Zhang L, Yu J. microRNA-21 negatively regulates Cdc25A and cell cycle progression in coloncancer cells. Cancer Res. 2009; 69 (20): 8157-65.
    連結:
  45. Wang Q, Zhang Y, Yang HS. Pdcd4 knockdown up-regulates MAP4K1 expression and activation of AP-1 dependent transcription through c-Myc. Biochim Biophys Acta. 2012; 1823 (10): 1807-14.
    連結:
  46. Wang Y, Taniguchi T. MicroRNAs and DNA damage response: implications for cancer therapy. Cell Cycle. 2013; 12 (1): 32-42.
    連結:
  47. Wang X, Zhao X, Gao P, Wu M. c-Myc modulates microRNA processing via the transcriptional regulation of Drosha. Sci Rep. 2013; 3: 1942.
    連結:
  48. Wolfer A, Ramaswamy S. MYC and metastasis. Cancer Res. 2011; 71 (6): 2034-7.
    連結:
  49. Wong TS, Liu XB, Wong BY, Ng RW, Yuen AP, Wei WI. Mature miR-184 as Potential Oncogenic microRNA of Squamous Cell Carcinoma of Tongue. Clin Cancer Res. 2008; 14 (9): 2588-92.
    連結:
  50. Wu DW, Cheng YW, Wang J, Chen CY, Lee H. Paxillin predicts survival and relapse in non-small cell lung cancer by microRNA-218 targeting. Cancer Res. 2010; 70 (24): 10392-401.
    連結:
  51. Wu DW, Hsu NY, Wang YC, Lee MC, Cheng YW, Chen CY, Lee H. c-Myc suppresses microRNA-29b to promote tumor aggressiveness and poor outcomes in non-small cell lung cancer by targeting FHIT. Oncogene. 2015; 34 (16): 2072-82.
    連結:
  52. Wu GG, Li WH, He WG, Jiang N, Zhang GX, Chen W, Yang HF, Liu QL, Huang YN, Zhang L, Zhang T, Zeng XC. Mir-184 post-transcriptionally regulates SOX7 expression and promotes cell proliferation in human hepatocellular carcinoma. PLoS One. 2014 Feb 18;9(2):e88796.
    連結:
  53. Wu HH, Wu JY, Cheng YW, Chen CY, Lee MC, Goan YG, Lee H. cIAP2 upregulated by E6 oncoprotein via epidermal growth factor receptor/phosphatidylinositol 3-kinase/AKT pathway confers resistance to cisplatin in human papillomavirus 16/18-infected lung cancer. Clin Cancer Res. 2010; 16 (21): 5200-10.
    連結:
  54. Xue G, Yan HL, Zhang Y, Hao LQ, Zhu XT, Mei Q, Sun SH. c-Myc-mediated repression of miR-15-16 in hypoxia is induced by increased HIF-2α and promotes tumor angiogenesis and metastasis by upregulating FGF2. Oncogene. 2015; 34 (11): 1393-406.
    連結:
  55. Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens RM, Okamoto A, Yokota J, Tanaka T, Calin GA, Liu CG, Croce CM, Harris CC. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell. 2006; 9 (3): 189-98.
    連結:
  56. Yilmaz M, Christofori G. Mechanisms of motility in metastasizing cells. Mol Cancer Res. 2010; 8 (5): 629-42.
    連結:
  57. Younis RH, Cao W, Lin R, Xia R, Liu Z, Edelman MJ, Mei Y, Mao L, Ren H. CDC25A(Q110del): a novel cell division cycle 25A isoform aberrantly expressed in non-small cell lung cancer. PLoS One. 2012; 7 (10): e46464.
    連結:
  58. Yu Y, Kanwar SS, Patel BB, Oh PS, Nautiyal J, Sarkar FH, Majumdar AP. MicroRNA-21 induces stemness by downregulating transforming growth factor beta receptor 2 (TGFβR2) in colon cancer cells. Carcinogenesis. 2012; 33 (1): 68-76.
    連結:
  59. Yue W, Sun Q, Landreneau R, Wu C, Siegfried JM, Yu J, Zhang L. Fibulin-5 suppresses lung cancer invasion by inhibiting matrix metalloproteinase-7 expression. Cancer Res. 2009; 69 (15): 6339-46.
    連結:
  60. Zhen Y, Liu Z, Yang H, Yu X, Wu Q, Hua S, Long X, Jiang Q, Song Y, Cheng C, Wang H, Zhao M, Fu Q, Lyu X, Chen Y, Fan Y, Liu Y, Li X, Fang W. Tumor suppressor PDCD4 modulates miR-184-mediated direct suppression of C-MYC and BCL2 blocking cell growth and survival in nasopharyngeal carcinoma. Cell Death Dis. 2013; 4: e872.
    連結:
  61. Zhou R, Zhou X, Yin Z, Guo J, Hu T, Jiang S, Liu L, Dong X, Zhang S, Wu G. Tumor invasion and metastasis regulated by microRNA-184 and microRNA-574-5p in small-cell lung cancer. Oncotarget. 2015; 6 (42): 44609-22.
    連結:
  62. Bonci D, Coppola V, Patrizii M, Addario A, Cannistraci A, Francescangeli F, Pecci R, Muto G, Collura D, Bedini R, Zeuner A, Valtieri M, Sentinelli S, Benassi MS, Gallucci M, Carlini P, Piccolo S, De Maria R. A microRNA code for prostate cancer metastasis. Oncogene. 2016; 35 (9): 1180-92.
  63. Chen X, Song X, Yue W, Chen D, Yu J, Yao Z, Zhang L. Fibulin-5 inhibits
  64. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ. RAS is regulated by the let-7 microRNA family. Cell. 2005; 120 (5): 635-47.
  65. Johnson CD, Esquela-Kerscher A, Stefani G, Byrom M, Kelnar K, Ovcharenko D, Wilson M, Wang X, Shelton J, Shingara J, Chin L, Brown D, Slack FJ. The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res. 2007; 67 (16): 7713-22.
  66. Ma L, Young J, Prabhala H, Pan E, Mestdagh P, Muth D, Teruya-Feldstein J, Reinhardt F, Onder TT, Valastyan S, Westermann F, Speleman F, Vandesompele J, Weinberg RA. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol. 2010; 12 (3): 247-56.
  67. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A. 2006; 103 (7): 2257-61.
  68. Wellner U, Schubert J, Burk UC, Schmalhofer O, Zhu F, Sonntag A, Waldvogel B, Vannier C, Darling D, zur Hausen A, Brunton VG, Morton J, Sansom O, Schüler J, Stemmler MP, Herzberger C, Hopt U, Keck T, Brabletz S, Brabletz T. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol. 2009; 11 (12): 1487-95.
  69. Wu W, Fan YH, Kemp BL, Walsh G, Mao L. Overexpression of cdc25A and cdc25B is frequent in primary non-small cell lung cancer but is not associated with overexpression of c-myc. Cancer Res. 1998; 58 (18): 4082-5.