Title

3CL蛋白酶對於A549肺癌細胞顆粒球巨噬細胞聚落刺激因子生成的影響

Translated Titles

Effect of 3C-like proteinase on granulocyte-macrophage colony-stimulating factor gene expression in A549 human lung carcinoma cells

DOI

10.6834/CSMU.2012.00039

Authors

廖憲華

Key Words

3CL蛋白酶顆粒球巨噬細胞聚落刺激因子 ; 3CL Protase ; GM-CSF

PublicationName

中山醫學大學醫學研究所學位論文

Volume or Term/Year and Month of Publication

2012年

Academic Degree Category

博士

Advisor

蔡嘉哲;鄭森隆

Content Language

繁體中文

Chinese Abstract

嚴重急性呼吸道症候群 (SARS) 是世界衛生組織於92年3月15日新公布的名稱,在這之前它被稱為非典型肺炎。感染特點為發生瀰漫性肺炎及呼吸衰竭,因為它比過去所知病毒、細菌引起的非典型肺炎病情更為嚴重,因此取名為嚴重急性呼吸道症候群 (severe acute respiratory syndrome, SARS)。嚴重急性呼吸道症候群的主要症狀為發高燒(>38℃)、咳嗽、呼吸急促或呼吸困難。可能伴隨其他症狀,包括:頭痛、肌肉僵直、食慾不振、倦怠、意識紊亂、皮疹及腹瀉,胸部X光檢查可發現肺部病變。嚴重急性呼吸道症候群最嚴重時會出現瀰漫性肺炎,氧氣交換下降,導致肺部缺氧,所以病人會呼吸困難、缺氧,甚至導致死亡。 致病因子(Infectious agent)為在92年4月16日世界衛生組織正式宣布,SARS的致病原為新發現的冠狀病毒,並被正式命名為「SARS病毒」 (SARS- CoV)。(CDC Taiwan) SARS病毒 (SARS- CoV) 的3C-like 蛋白酶對於病毒多胜肽前驅物質具有重要的影響,並且和病毒的突變有關聯。但是到目前為止,3C-like 蛋白酶在宿主的細胞中所扮演的角色和功能卻不是很明確的被清楚理解。本篇研究在於探討和研究3C-like蛋白酶對於基因轉染細胞的細胞激素 (cytokines) 的分泌的影響和其扮演的角色。 結果Results 從免疫螢光顯微鏡的結果來看,用c-myc 標示 (tagged) 的 3C-like 蛋白酶可以在被轉染的A549 細胞的細胞質和細胞核中定位發現出來。而不論是用反轉錄聚合酶鏈式反應 (RT-PCR) 分析或是酵素連結免疫分析法 (ELISA) 分析法,顆粒球巨噬細胞聚落刺激因子granulocyte-macrophage colony-stimulating factor (GM-CSF) 在 3C-like 蛋白酶轉染的細胞中的expression 顯著地下降,但對於其他的細胞激素 (cytokines) 例如: IL-1β, IL-6, IL-8, IL12p40, TNF-α, and TGF-β 卻沒有明顯改變。 此外,在和EGFP 轉染的細胞作比較時,在 3C-like 蛋白酶轉染的A549細胞中的NF-kB 的protein levels 較低。 結論Conclusion 經由本篇研究可推測3C-like 蛋白酶可以在被轉染的A549 細胞中,經由對NF-kB production 的down-regulation ,抑制GM-CSF的濃度表現量(expression)。

English Abstract

Severe Acute Respiratory Syndrome (SARS) is a severe respiratory illness caused by a novel virus, the SARS coronavirus (SARS-CoV) . 3C-like protease (3CLpro) of SARS-CoV plays a role in processing viral polypeptide precursors and is responsible of viral maturation. However, the function of 3CLpro in host cells remains unknown. This study investigated how the 3CLpro affected the secretion of cytokines in the gene-transfected cells. Results From immunofluorescence microscopy, the localization of c-myc tagged 3CLpro was detected both in the cytoplasm and nucleus of transfected A549 cells. Expression of granulocyte-macrophage colony-stimulating factor (GM-CSF) was significantly decreased in 3CLpro-transfected cells by both RT-PCR and ELISA, but without changes in other cytokines, i.e., IL-1β, IL-6, IL-8, IL12p40, TNF-α, and TGF-β. Furthermore, the protein levels of NF-kB decreased in 3CLpro-transfected A549 cells when compared to EGFP transfected cells. Conclusions Our results suggest that the 3CLpro may suppress expression of GM-CSF in transfected A549 cells through down-regulation of NF-kB production.

Topic Category 醫藥衛生 > 醫藥總論
醫學院 > 醫學研究所
Reference
  1. 2. Rota PA, Oberste MS, Monroe SS, Nix WA, Campagnoli R, Icenogle JP, Penaranda S, Bankamp B, Maher K, Chen MH, et al.: Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 2003, 300:1394-9.
    連結:
  2. 3. Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S, Tong S, Urbani C, Comer JA, Lim W, et al.: A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 2003, 348:1953-66.
    連結:
  3. 5. Graham RL, Sparks JS, Eckerle LD, Sims AC, Denison MR: SARS coronavirus replicase proteins in pathogenesis. Virus Res 2008, 133:88-100
    連結:
  4. 6. Prentice E, McAuliffe J, Lu X, Subbarao K, Denison MR: Identification and characterization of severe acute respiratory syndrome coronavirus replicase proteins.
    連結:
  5. J Virol 2004, 78:9977-86.
    連結:
  6. 7. Hsu MF, Kuo CJ, Chang KT, Chang HC, Chou CC, Ko TP, Shr HL, Chang GG, Wang AH, Liang PH: Mechanism of the maturation process of SARS-CoV 3CL protease. J Biol Chem 2005, 280:31257-66.
    連結:
  7. 8. Sun H, Luo H, Yu C, Sun T, Chen J, Peng S, Qin J, Shen J, Yang Y, Xie Y, et al.: Molecular cloning, expression, purification, and mass spectrometric characterization of 3C-like protease of SARS coronavirus. Protein Expr Purif 2003, 32:302-8.
    連結:
  8. 9. Fan K, Wei P, Feng Q, Chen S, Huang C, Ma L, Lai B, Pei J, Liu Y, Chen J, et al.: Biosynthesis, purification, and substrate specificity of severe acute respiratory syndrome coronavirus 3C-like proteinase. J Biol Chem 2004, 279:1637-42.
    連結:
  9. 10. Anand K, Ziebuhr J, Wadhwani P, Mesters JR, Hilgenfeld R: Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science 2003, 300:1763-7.
    連結:
  10. 11. Huang C, Wei P, Fan K, Liu Y, Lai L: 3C-like proteinase from SARS coronavirus catalyzes substrate hydrolysis by a general base mechanism. Biochemistry 2004, 43:4568-74.
    連結:
  11. 12. Lin CW, Lin KH, Hsieh TH, Shiu SY, Li JY: Severe acute respiratory syndrome coronavirus 3C-like protease-induced apoptosis. FEMS Immunol Med Microbiol 2006, 46:375-80.
    連結:
  12. 13. Lin CW, Tsai FJ, Wan L, Lai CC, Lin KH, Hsieh TH, Shiu SY, Li JY: Binding interaction of SARS coronavirus 3CL(pro) protease with vacuolar-H+ ATPase G1 subunit. FEBS Lett 2005, 579:6089-94.
    連結:
  13. 15. Nicholls JM, Poon LL, Lee KC, Ng WF, Lai ST, Leung CY, Chu CM, Hui PK, Mak KL, Lim W, et al.: Lung pathology of fatal severe acute respiratory syndrome. Lancet 2003, 361:1773-8
    連結:
  14. 16. Wang CH, Liu CY, Wan YL, Chou CL, Huang KH, Lin HC, Lin SM, Lin TY, Chung KF, Kuo HP: Persistence of lung inflammation and lung cytokines with high-resolution CT abnormalities during recovery from SARS. Respir Res 2005, 6:42.
    連結:
  15. 17. Lo AW, Tang NL, To KF: How the SARS coronavirus causes disease: host or organism? J Pathol 2006, 208:142-51.
    連結:
  16. 18. Wong CK, Lam CW, Wu AK, Ip WK, Lee NL, Chan IH, Lit LC, Hui DS, Chan MH, Chung SS, et al.: Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin Exp Immunol 2004, 136:95-103.
    連結:
  17. 21. Cheung CY, Poon LL, Ng IH, Luk W, Sia SF, Wu MH, Chan KH, Yuen KY, Gordon S, Guan Y, et al.: Cytokine responses in severe acute respiratory syndrome coronavirus-infected macrophages in vitro: possible relevance to pathogenesis.
    連結:
  18. J Virol 2005, 79:7819-26. Jiang Y, Xu J, Zhou C, Wu Z, Zhong S, Liu J, Luo W, Chen T, Qin Q, Deng P: Characterization of cytokine/chemokine profiles of severe acute respiratory syndrome. Am J Respir Crit Care Med 2005, 171:850-7.
    連結:
  19. 22. Jiang Y, Xu J, Zhou C, Wu Z, Zhong S, Liu J, Luo W, Chen T, Qin Q, Deng P: Characterization of cytokine/chemokine profiles of severe acute respiratory syndrome. Am J Respir Crit Care Med 2005, 171:850-7.
    連結:
  20. 23. Lin YS, Lin CF, Fang YT, Kuo YM, Liao PC, Yeh TM, Hwa KY, Shieh CC, Yen JH, Wang HJ, et al.: Antibody to severe acute respiratory syndrome (SARS)-associated coronavirus spike protein domain 2 cross-reacts with lung epithelial cells and causes cytotoxicity. Clin Exp Immunol 2005, 141:500-8.
    連結:
  21. 24. Yang YH, Huang YH, Chuang YH, Peng CM, Wang LC, Lin YT, Chiang BL: Autoantibodies against human epithelial cells and endothelial cells after severe acute respiratory syndrome (SARS)-associated coronavirus infection. J Med Virol 2005, 77:1-7.
    連結:
  22. 25. Griego SD, Weston CB, Adams JL, Tal-Singer R, Dillon SB: Role of p38 mitogen-activated protein kinase in rhinovirus-induced cytokine production by bronchial epithelial cells. J Immunol 2000, 165:5211-20.
    連結:
  23. Blood 1996, 88:3482-90.
    連結:
  24. 27. Ziegler T, Matikainen S, Ronkko E, Osterlund P, Sillanpaa M, Siren J, Fagerlund R, Immonen M, Melen K, Julkunen I: Severe acute respiratory syndrome coronavirus fails to activate cytokine-mediated innate immune responses in cultured human monocyte-derived dendritic cells. J Virol 2005, 79:13800-5.
    連結:
  25. 28. Woltman AM, van der Kooij SW, Coffer PJ, Offringa R, Daha MR, van Kooten C: Rapamycin specifically interferes with GM-CSF signaling in human dendritic cells, leading to apoptosis via increased p27KIP1 expression. Blood 2003, 101:1439-45
    連結:
  26. 29. Eager R, Nemunaitis J: GM-CSF gene-transduced tumor vaccines. Mol Ther 2005, 12:18-27.
    連結:
  27. 30. LeVine AM, Reed JA, Kurak KE, Cianciolo E, Whitsett JA: GM-CSF-deficient mice are susceptible to pulmonary group B streptococcal infection. J Clin Invest 1999, 103:563-9.
    連結:
  28. 31. Trapnell BC, Whitsett JA: Gm-CSF regulates pulmonary surfactant homeostasis and alveolar macrophage-mediated innate host defense. Annu Rev Physiol 2002, 64:775-802.
    連結:
  29. 32. Moore BB, Coffey MJ, Christensen P, Sitterding S, Ngan R, Wilke CA, McDonald R, Phare SM, Peters-Golden M, Paine R, et al.: GM-CSF regulates bleomycin-induced pulmonary fibrosis via a prostaglandin-dependent mechanism.
    連結:
  30. J Immunol 2000, 165:4032-9.
    連結:
  31. 33. Christensen PJ, Bailie MB, Goodman RE, O'Brien AD, Toews GB, Paine R: Role of diminished epithelial GM-CSF in the pathogenesis of bleomycin-induced pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2000, 279:L487-95.
    連結:
  32. 34. Trapnell BC, Whitsett JA, Nakata K: Pulmonary alveolar proteinosis. N Engl J Med 2003, 349:2527-39.
    連結:
  33. 36. Hegyi A, Ziebuhr J: Conservation of substrate specificities among coronavirus main proteases. J Gen Virol 2002, 83:595-599.
    連結:
  34. 37. Hideshi N, Yoshiki U, Makoto K, Ryoji H, Hirokuni T: Cyclooxygenase-2 inhibitor NS-398 suppresses cell growth and constitutive production of granulocyte-colony stimulating factor and granulocyte macrophage-colony stimulating factor in lung cancer cells. Cancer Science 2003, 94:173-180.
    連結:
  35. 38. Hongsachart P, Huang-Liu R, Sinchaikul S, Pan FM, Phutrakul S, Chuang YM, Yu CJ, Chen ST: Glycoproteomic analysis of WGA-bound glycoprotein biomarkers in sera from patients with lung adenocarcinoma. Electrophoresis 2009, 30:1206-20
    連結:
  36. 39. Lee N, Hui D, Wu A et al. A major outbreak of severe acute respiratory syndrome in Hong Kong. N Engl J Med 2003; 348:1986–94.
    連結:
  37. 40. Tsang KW, Ho PL, Ooi GC et al. A cluster of cases of severe acute respiratory syndrome in Hong Kong. N Engl J Med 2003; 348:1977–85
    連結:
  38. 41. Poutanen SM, Low DE, Henry B et al. Identification of severe acute respiratory syndrome in Canada. N Engl J Med 2003; 348:1995–2005.
    連結:
  39. 42. Wong RSM, Wu AKL, To KF et al. Haematological changes in patients with severe acute respiratory syndrome. Br Med J 2003; 326:1358–62
    連結:
  40. 43. Peiris JS, Lai ST, Poon LL et al. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 2003; 361:1319–25
    連結:
  41. 44. Marra MA, Jones SJ, Astell CR et al. The genome sequence of the SARS-associated coronavirus. Science 2003; 300:1399–404
    連結:
  42. 45. Poon LL, Wong OK, Chan KH et al. Rapid diagnosis of a coronavirus associated with severe acute respiratory syndrome (SARS). Clin Chem 2003; 49:953–5
    連結:
  43. 46. Mogensen TH, Paludan SR. Molecular pathways in virus-induced cytokine production. Microbiol Mol Biol Rev 2001; 65:131–50
    連結:
  44. 47. Van Reeth K, Van Gucht S, Pensaert M. In vivo studies on cytokine involvement during acute viral respiratory disease of swine: troublesome but rewarding. Vet Immunol Immunopathol 2002; 87:161–8
    連結:
  45. 48. Kunkel SL, Lukacs NW, Strieter RM, Chensue SW. The role of chemokines in the immunopathology of pulmonary disease. Forum (Genova) 1999; 9:339–55
    連結:
  46. 49. Ruan YJ, Wei CL, Ee AL, et al. Comparative full-length genome sequence analysis of 14 SARS coronavirus isolates and common mutations associated with putative origins of infection. Lancet. 2003;361:1779-1785
    連結:
  47. cytokine levels in patients with severe acute respiratory
    連結:
  48. 51. Ng PC, Lam CW, Li AM, et al. Inflammatory cytokine profile in children with severe acute respiratory syndrome. Pediatrics. 2004;113:e7-14
    連結:
  49. 52. Beijing Group of National Research Project for SARS.
    連結:
  50. Dynamic changes in blood cytokine levels as clinical indicators in severe acute respiratory syndrome. Chin Med J (Engl). 2003;116:1283-1287
    連結:
  51. 53. Chan PK, Ng KC, Chan RC, et al. Immunofluorescence assay for serologic diagnosis of SARS. Emerg Infect Dis. 2004;10:530-532
    連結:
  52. 54. Wong RS, Wu A, To KF, et al. Haematological manifestations in patients with severe acute respiratory syndrome:retrospective analysis. BMJ. 2003;326:1358-1362
    連結:
  53. 55. O’Donnell R, Tasker RC, Roe MF. SARS: understanding the coronavirus: apoptosis may explain lymphopenia of SARS. BMJ. 2003;327:620
    連結:
  54. 56. Wong CK, Lam CWK. Clinical applications of cytokine assays. Adv Clin Chem 2003; 37:1–46
    連結:
  55. 57. Lu L, Manopo I, Leung BP, et al. Immunological characterization of the spike protein of the severe acute respiratory syndrome coronavirus. J Clin Microbiol. 2004;42:1570-1576.
    連結:
  56. 58. Anand, K., G. J. Palm, J. R. Mesters, S. G. Siddell, J. Ziebuhr, and R. Hilgenfeld. 2002. Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra alpha-helical domain. EMBO J.21:3213–3224
    連結:
  57. 61. Gorbalenya, A. E., E. V. Koonin, A. P. Donchenko, and V. M. Blinov. 1989. Coronavirus genome: prediction of putative functional domains in the nonstructural polyprotein by comparative amino acid sequence analysis. Nucleic Acids Res. 17:4847–4861
    連結:
  58. 62. Kuiken, T., R. A. Fouchier, M. Schutten, G. F. Rimmelzwaan, G. van Amerongen, D. van Riel, J. D. Laman, T. de Jong, G. van Doornum, W. Lim, A. E. Ling, P. K. Chan, J. S. Tam, M. C. Zambon, R. Gopal, C. Drosten, S. van der Werf, N. Escriou, J. C. Manuguerra, K. Stohr, J. S. Peiris, and A. D. Osterhaus. 2003. Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet 362:263–270.
    連結:
  59. 63. Lee, T. W., M. M. Cherney, C. Huitema, J. Liu, K. E. James, J. C. Powers, L. D. Eltis, and M. N. James. 2005. Crystal structures of the main peptidase from the SARS coronavirus inhibited by a substrate-like aza-peptide epoxide.J. Mol. Biol. 353:1137–1151
    連結:
  60. 64. Shi, J., Z. Wei, and J. Song. 2004. Dissection study on the severe acute respiratory syndrome 3C-like protease reveals the critical role of the extra domain in dimerization of the enzyme: defining the extra domain as a new target for design of highly specific protease inhibitors. J. Biol. Chem. 279:24765–24773
    連結:
  61. 65. Yang, H., W. Xie, X. Xue, K. Yang, J. Ma, W. Liang, Q. Zhao, Z. Zhou, D. Pei, J. Ziebuhr, R. Hilgenfeld, K. Y. Yuen, L. Wong, G. Gao, S. Chen, Z. Chen, D. Ma, M. Bartlam, and Z. Rao. 2005. Design of wide-spectrum inhibitors targeting coronavirus main proteases. PLoS Biol. 3:e324
    連結:
  62. 66. Ziebuhr, J. 2005. The coronavirus replicase. Curr. Top. Microbiol. Immunol. 287:57–94.
    連結:
  63. 1. Fouchier RA, Kuiken T, Schutten M, van Amerongen G, van Doornum GJ, van den Hoogen BG, Peiris M, Lim W, Stohr K, Osterhaus AD: Aetiology: Koch's postulates fulfilled for SARS virus. Nature 2003, 423:240.
  64. 4. Marra MA, Jones SJ, Astell CR, Holt RA, Brooks-Wilson A, Butterfield YS, Khattra J, Asano JK, Barber SA, Chan SY, et al.: The Genome sequence of the SARS-associated coronavirus. Science 2003, 300:1399-404.
  65. 14. Kiemer L, Lund O, Brunak S, Blom N: Coronavirus 3CLpro proteinase cleavage sites: possible relevance to SARS virus pathology. BMC Bioinformatics 2004, 5:72.
  66. 19. Zhu M: SARS Immunity and Vaccination. Cell Mol Immunol 2004, 1:193-8.
  67. 20. Xu X, Gao X: Immunological responses against SARS-coronavirus infection in humans. Cell Mol Immunol 2004, 1:119-22.
  68. 26. Munoz C, Pascual-Salcedo D, Castellanos MC, Alfranca A, Aragones J, Vara A, Redondo JM, de Landazuri MO: Pyrrolidine dithiocarbamate inhibits the production of interleukin-6, interleukin-8, and granulocyte-macrophage colony-stimulating factor by human endothelial cells in response to inflammatory mediators: modulation of NF-kappa B and AP-1 transcription factors activity.
  69. 35. Kiemer L, Lund O, Brunak S, Blom N: Coronavirus 3CLpro proteinase cleavage sites: Possible relevance to SARS virus pathology. BMC Bioinformatics 2004, 5:72.
  70. 50. Xie J, Han Y, Li TS, et al. Dynamic changes of plasma
  71. syndrome. Zhonghua Nei Ke Za Zhi. 2003;42:643-645.
  72. 59. Brown, T. D., and I. Brierley. 1995. The coronavirus nonstructural proteins, p. 191–217. In S. G. Siddell (ed.), The Coronaviridae. Plenum Press, New York, N.Y.
  73. 60. Drosten, C., S. Gunther, W. Preiser, S. van der Werf, H. R. Brodt, S. Becker, H. Rabenau, M. Panning, L. Kolesnikova, R. A. Fouchier, A. Berger, A. M.Burguiere, J. Cinatl, M. Eickmann, N. Escriou, K. Grywna, S. Kramme, J. C. Manuguerra, S. Muller, V. Rickerts, M. Sturmer, S. Vieth, H. D. Klenk, A. D. Osterhaus, H. Schmitz, and H. W. Doerr. 2003. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl.J. Med. 348:1967–1976.