金屬紫質錯合物M(Por)(L)n, M=汞、鎳、錳之合成與其X光單晶繞射、核磁共振光譜及電子順磁共振光譜之研究

Translated Titles

Synthesis and Molecular Structure Studies of Metalloporphyrins : M(Por)(L)n, M=Hg, Ni and Mn by single-crystal X-ray determination, NMR and EPR Spectroscopy





Key Words

紫質汞錯合物 ; X光繞射 ; 汞的核磁共振光譜 ; 氮-醯胺基化合物 ; 雙汞 ; 抗磁性與逆磁性紫質錯化合物 ; 三角性程度 ; 磁矩 ; 平行向極化 ; 零場分裂值 ; Mercury porphyrin ; X-ray diffraction ; Mercury NMR ; N-carboxamido ; Bismercury ; Diamagnetic and paramagnetic porphyrin ; degree of trigonality ; magnetic moment ; parallel polarization ; zero-field splitting (ZFS)



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


English Abstract

1.The reaction of PhHgOAc with N–NHCO-2-C4H3S-Htpp (5) and N–p-HNSO2C6H4tBu-Htpp (4) gave a mercury (II) complex of (phenylato) (N-2-thiophenecarboxamido-meso-tetra phenylporphyrinato)mercury(II) 1.5 methylene chloride solvate [HgPh(N–NHCO-2-C4H3S-tpp)•CH2Cl2•0.5C6H14; 6•CH2Cl2•0.5C6H14] and a bismercury complex of bisphenylmercury(II) complex of 21-(4-tert-butyl-benzenesulfonamido)-5,10,15,20,- tetraphenylporphyrin, [(HgPh)2 (N–p-NSO2C6H4tBu-tpp); 7], respectively. The crystal structures of 6•CH2Cl2•0.5C6H14 and 7 were determined. The coordination sphere around Hg(1) in 6•CH2Cl2•0.5C6H14 and Hg(2) in 7 is a sitting-atop derivative with a seesaw geometry, whereas for the Hg(1) in 7, it is a linear coordination geometry. Both Hg(1) in 6•CH2Cl2•0.5C6H14 and Hg(2) in 7 acquire 4-coordination with four strong bonds [Hg(1)-N(1) = 2.586(3) Å, Hg(1)-N(2) = 2.118(3) Å, Hg(1)-N(3) = 2.625(3) Å, and Hg(1)-C(50) = 2.049(4) Å for 6•CH2Cl2•0.5C6H14; Hg(2)-N(1) = 2.566(6) Å, Hg(2)-N(2) = 2.155(6) Å, Hg(2)-N(3) = 2.583(6) Å, and Hg(2)-C(61) = 2.064(7) Å for 7]. The plane of the three pyrrole nitrogen atoms [i.e., N(1)-N(3)] strongly bonded to Hg(1) in 6•CH2Cl2•0.5C6H14 and to Hg(2) in 7 is adopted as a reference plane 3N. For the Hg2+ complex in 6•CH2Cl2•0.5C6H14 , the pyrrole nitrogen bonded to the 2-thiophenecarboxamido ligand lies in a plane with a dihedral angle of 33.4° with respect to the 3N plane, but for the bismercury(II) complex in 7, the corresponding dihedral angle for the pyrrole nitrogen bonded to the NSO2C6H4tBu group is found to be 42.9°. In the former complex, Hg(1)2+ and N(5) are located on different sides at 1.47 and -1.29 Å from its 3N plane, and in the latter one, Hg(2)2+ and N(5) are also located on different sides at -1.49 and 1.36 Å form its 3N plane. The Hg(1)•••Hg(2) distance in 7 is 3.622(6) Å. Hence, no metallophilic Hg(II)•••Hg(II) interaction may be anticipated. NOE difference spectroscopy, HMQC and HMBC were employed to unambiguous assignment for the 1H and 13C NMR resonances of 6•CH2Cl2•0.5C6H14 in CD2Cl2 and 7 in CDCl3 at 20°C. The 199Hg chemical shift δ for a 0.05 M solution of 7 in CDCl3 solution is observed at -1074 ppm for Hg(2) nucleus with a coordination number of four and at -1191 ppm for Hg(1) nucleus with a coordination number of two. The former resonance is consistent with that chemical shift for a 0.01 M solution of 6 in CD2Cl2 having observed at -1108 ppm for Hg(1) nucleus with a coordination number of four. 2.The crystal structures of diamagnetic N-p-tert-butylbenzenesulfonylimido- meso-tetraphenylporphyrinatonickle(II) [Ni(N-p-NSO2C6H4tBu-tpp); 8] and paramagnetic acetato-[N-p-tert-butylbenzenesulfonylimido-meso- tetraphenylporphyrinato]manganese(III) [Mn(N-p-NSO2C6H4 tBu-tpp)(O2CCH3); 9] were determined. The coordination sphere around Ni2+ in 8 is described as four-coordinated distorted square planar, whereas, for the Mn3+ ion in 9, it is a five-coordinate distorted square-based pyramid in which the unidentate CH3COO- ligand occupied the axial site. By the ‘‘degree of trigonality’’ principle ,the penta-coordinated Mn(III) complex is best described as a distorted trigonal bipyramid (or a squarebased pyramidal distorted trigonal bipyramid, SBPDTBP) The magnetic moment of 9 clearly shows a plateau equal to 4.57 µB, which is close to the expected value of 4.90 µB for a quintet high-spin state (S = 2).The g value of 12.6 (or 8.8) measured from the parallel polarization (or perpendicular polarization) of X-band EPR spectra at 77 K is consistent with a high spin manganese(III) (S = 2) in 9. The magnitude of axial (D) zero-field splitting (ZFS) in 9 were determined approximately as –1.1 cm-1, by paramagnetic susceptibility measurements and EPR spectroscopy.

Topic Category 基礎與應用科學 > 化學
理學院 > 化學系所
  1. chapter 1
  2. [1] H. J. Callot, B. Chevrier, R.Weiss, J. Am. Chem. Soc. 101 (1979) 7729.
  3. [3] H. J. Callot, Tetrahedron 35 (1979) 1455.
  4. [4] H. J. Callot, J. Fischer, R. Weiss, J. Am. Chem. Soc. 104 (1982) 1272.
  5. [5] H. J. Callot, B. Chevrier, R. Weiss, J. Am. Chem. Soc. 100 (1978) 4733.
  6. [6] K. Ichimura, Bull Chem. Soc. Jpn. 51 (1978) 1444.
  7. [9] J. Y. Tung, J. H. Chen, Polyhedron 26 (2007) 589.
  8. [11] G. M. Sheldrick, SHELXL97, a Program for Crystal Structures Refinement, University of Göttingen, Germany, 1997.
  9. [13] S. Das, C. H. Hung, S. Goswami, Inorg. Chem. 42 (2003) 8592.
  10. [14] J. P. Macquet, M. M. Millard, T. Theophanides, J. Am. Chem. Soc. 100 (1978)4741.
  11. [15] C. E. Jr. Johnson, F. A. Bovey, J. Chem. Phys. (1958) 29 1012.
  12. [16] B. Wrackmeyer, R. Contreres, Annu. Rep. NMR spectrosco. 24 (1992) 267.
  13. [20] W. McFarlane, J. Chem. Soc. A (1968) 2280.
  14. [25] J. A. Pople, W. G. Schneider, H. J. Bernstein, High-Resolution Nuclear Magnetic Resonance, McGraw-Hill, New York, 1959, p. 172.
  15. [1] H.J. Callot, B. Chevrier, R. Weiss, J. Am. Chem. Soc. 100 (1978) 4733.
  16. 39 (2000) 1106.
  17. [3] Y.I. Li, C.S. Chang, J.Y. Tung, C.H. Tsai, J.H. Chen, F.L. Liao,
  18. S.L. Wang, Polyhedron 19 (2000) 413.
  19. [4] C.S. Chang, C.H. Chen, Y.I. Li, B.C. Liau, B.T. Ko, S. Elango, J.H.
  20. Chen, Inorg. Chem. 40 (2001) 2905.
  21. [5] Chen, C. H.; Lee, Y. Y.; Liau, B. C.; Elango, S.; Chen, J. H.; Hsieh, H. Y.; Liao, F. L.; Wang, S. L.; Hwang. L. P. J. Chem. Soc. Dalton Trans. 2002, 3001.
  22. [8] W.Z. Shil, K.Y. Cho, C.W. Cheng, J.H. Chen, S.S. Wang, F.L. Liao,J.Y. Tung, H.Y. Hsieh, S. Elango, Polyhedron 25 (2006) 1864.
  23. [11] A. Caneschi, D. Gatteschi, R. Sessoli, J. Am. Chem. Soc. 113 (1991) 5873.
  24. [15] Hagen, W. R. Adv. Inorg. Chem. 1992, 38, 165.
  25. [17] J. Y. Tung, J. H. Chen, Polyhedron 26 (2007) 589.
  26. References
  27. [2] M. C. Wang, L. S. Sue, B. C. Liau, B. T. Ko, S. Elango, J. H. Chen, Inorg. Chem. 40 (2001) 6064.
  28. [7] F. A. Yang, J. H. Chen, H. Y. Hsieh, S. Elango, L. P. Hwang, Inorg. Chem. 42 (2003) 4603.
  29. [8] W. Z. Shil, K. Y. Cho, C. W. Cheng, J. H. Chen, S. S. Wang, F. L. Liao, J. Y. Tung, H. Y. Hsieh, S. Elango, Polyhedron 25 (2006) 1864.
  30. [10] G. C. Stocco, A. Tamburello, M. A. Girasoli, Inorg. Chem. Acta 78 (1983) 57.
  31. [12] J. E. Huheey, E. A. Keiter , R. L. Keiter, Inorganic Chemistry, Harper Collins College Publishers, New York, 4th edn., 1993, pp. 114, 292.
  32. [17] R. P. Blake, B. Lee, M. F. Summers, J. B. Park, Z. H. Zhou, M. W. W. Adams, New. J. Chem. 18 (1994) 387.
  33. [18] M. L. Helm, G. P. Helton, D. G. VanDerveer, G. P. Grant, Inorg. Chem. 44 (2005) 5696.
  34. [19] T. S. Lobana, A. Sanchez, J. S. Casas, A. Castineiras, J. Sordo, M. S. Garcia-Tasende, E. M. Vazquez-Lopez, J. Chem. Soc. Dalton Trans. (1997) 4289.
  35. [21] J. S. Casas, E. E. Castellano, A. Macias, N. Playa, A. Sanchez, J. Sordo, J. M. Varela, E. M. Vazquez-Lopez, Polyhedron 20 (2001) 1845.
  36. [22] Y. K. Grishin, Y. A. Ustynyuk, T. I. Voevodskaya, A. S. Peregudov, D. N. Kravtsov. Bull. Acad. Sci. USSR Div. Chem. Sci. 34 (1985) 1399.
  37. [23] S. J. Lin, T. N. Hong, J. Y. Tung, J. H. Chen, Inorg. Chem. 36 (1997) 3886.
  38. [24] A. Carrington, A. D. McLachlan, Introduction to Magnetic Resonance, Harper and Row, New York, 1967, p. 57.
  39. chapter 2
  40. [2] J.Y. Tung, J.I. Jang, C.C. Lin, J.H. Chen, L.P. Hwang, Inorg. Chem.
  41. [6] F. A. Yang, J. H. Chen, H. Y. Hsieh, S. Elango, L. P. Hwang, Inorg. Chem. 42 (2003) 4603.
  42. [7] J.P. Mahy, P. Battioni, G. Bedi, D. Mansuy, J. Fishcher, R. Weiss,
  43. I. Morgenstern-Badarau, Inorg. Chem. 27 (1988) 353.
  44. [9]A. Abragam and B. Bleaney In: Electron Paramagnetic Resonance of Transition Ions, Dover Publications, Inc, New York (1986), p. 399, 434–436, 679
  45. [10] Ryo Takeda, K. Koizumi, M. Shoji, H. Nitta, S. Yamanaka, M. Okumura, K. Yamaguchi, Polyhedron 26 (2007) 2309.
  46. [12] S.M.J. Aubin, M.W. Wemple, D.M. Adams, H.-L. Tsai, G. Christou, D.N. Hendrickson, J. Am. Chem. Soc. 118 (1996) 7746.
  47. [13] D.P. Goldberg, J. Telser, J. Krzystek, A.G. Montalban, L.-C. Brunel, A.G.M. Barrett, B.M. Hoffman, J. Am. Chem. Soc. 119 (1997) 8722.
  48. [14] Eickman, H. H.; Klein, M. P.; Shirley, D. A. J. Chem. Phys. 1965, 42, 2113.
  49. [16] Spartalian. K.; Oosterhuis, W. T.; Neilands, J. B. J. Chem. Phys. 1975, 62, 3538.
  50. [18] S. J. Lin, T. N. Hong, J. Y. Tung, J. H. Chen, Inorg. Chem. 36 (1997) 3886
  51. [19] A.W. Addison, T.N. Rao, J. Reedijk, J.V. Rijn, G.C. Verchoor, J.Chem. Soc., Dalton Trans. (1984) 1349.
  52. [20] R.G. Garvey, R.O. Koob, M.L. Morris, Acta Crystallogr., Sect. C 43 (1987) 2056.
  53. [21] J.Krystek, Luca A. Pardi, Louis-Claude Brunel, Davis P. Goldberg, Brian M. Hoffman, Silvia Licoccia,Joshua Telser Spectrochimica Acta Part A 58 (2002), 1113