Title

積體電路銅內連線電遷移行為與電性可靠度之研究

Translated Titles

Electromigration Behavior and Electrical Reliability of Copper Interconnects in Integrated Circuits

DOI

10.6845/NCHU.2009.00029

Authors

林豐傑

Key Words

銅內連線 ; 電遷移 ; 氨氣/氦氣電漿處理 ; 電性可靠度 ; Cu interconnects ; electromigration ; NH3/He plasma treatment ; electrical reliability

PublicationName

中興大學材料科學與工程學系所學位論文

Volume or Term/Year and Month of Publication

2009年

Academic Degree Category

碩士

Advisor

張守一

Content Language

繁體中文

Chinese Abstract

本研究以雙鑲嵌銅內連線結構進行電遷移實驗,並且對銅與蝕刻終止層界面間施加氨氣/氦氣 (NH3/He) 電漿處理,探討界面結構對於元件電性可靠度之影響。研究在溫度 400゜C、電流密度 8 MA/cm2 下進行,由時間-電阻曲線圖之分析結果發現,經電漿處理後的測試結構其整體電阻值上升較為緩慢;而藉由 1.1R0、1.3R0、1.5R0 (R0 為初始電阻)、斷路 (Open) 時間累計圖分析可知,經電漿處理之結構其中間破壞壽命 (Median Time to Failure, MTF) 皆較無電漿處理之結構優異,顯示電漿處理可以有效提高元件電性之可靠度。觀察銅與蝕刻終止層 (SiCN) 界面發現,電漿處理可以有效去除銅氧化物層、並且產生銅氮或銅矽鍵結,增加界面附著力。觀察電遷移實驗後線路發生孔洞破壞的情形發現,無電漿處理之結構其孔洞傾向發生於銅與蝕刻終止層界面間,並且隨電遷移作用時間增加,孔洞逐漸由小變大;而經電漿處理之結構其孔洞則發生於銅導線內,證實氨氣/氦氣電漿處理可以強化界面附著力,抑制由界面處發生之電遷移行為。

English Abstract

Electromigration tests of dual-damascene Cu interconnect structures with or without an NH3/He plasma treatment between Cu and SiCN etch stop layer have been performed in this study at 400゜C under a current density of 8 MA/cm2 to investigate the influence of interface structures to electrical reliability. From the electrical resistance-to-time traces, it was observed that the electrical resistance of the interconnects with the plasma treatment increased slowly. From the cumulative failure probabilities of 1.1 R0, 1.3 R0, 1.5 R0 (R0: initial resistance), and wire opening, it was found that the interconnects with the plasma treatment exhibited a higher median time to failure, and the electrical reliability of the interconnects was effectively enhanced by the plasma treatment. An oxide layer existed at the Cu/SiCN interface without the plasma treatment, whereas it was removed by the plasma treatment, and Cu-N or Cu-Si bonds formed, consequently enhancing the adhesion of interface. From the observations of EM-induced voiding behaviors in the interconnects, it was found that voids nucleated at the Cu/SiCN interface without the plasma treatment and then grew gradually with testing intervals. In comparison, voids nucleated inside the Cu wires, rather than at the interface, after the plasma treatment, indicating that the NH3/He plasma treatment strengthened the adhesion of the interface and then inhibited the electromigration behavior which occurred at the interface.

Topic Category 工學院 > 材料科學與工程學系所
工程學 > 工程學總論
Reference
  1. [2] J.H. Zhao, “Electromigration and Electronic Device Degradation”, John Wiley & Sons, New York (1994), p. 171.
    連結:
  2. [4] A.V. Vairagar, Z. Gan, W. Shao, S.G. Mhaisalkar, H. Li, K.N. Tu, Z. Chen, E. Zschech, H.J. Engelmann, and S. Zhange, “Improvement of Electromigration Lifetime of Submicrometer Dual-Damascene Cu Interconnects Through Surface Engineering”, J. Electrochem. Soc., 153 (9) (2006) G840-G845.
    連結:
  3. [5] T.C. Wang, T.E. Hsieh, M.T. Wang, D.S. Su, C.H. Chang, Y.L. Wang, and J.Y. Lee, “Stress Migration and Electromigration Improvement for Copper Dual Damascene Interconnection”, J. Electrochem. Soc., 152 (1) (2005) G45-G49.
    連結:
  4. [7] S.P. Jeng, R.H. Havemann, and M.C. Chang, “Process Integrations and Manufacturability Issues for High Performance Multilevel Interconnect”, in Advanced Metallization for Devices and Circuits-Science, Technology and Manufactory Symposium, 1994, p. 25.
    連結:
  5. [8] M.T. Bohr, “Interconnect Scaling the Real Limiter to High Performance ULSI”, IEEE International Electron Devices Meeting, 1995, 241-242.
    連結:
  6. [9] H. Onoda, M. Kageyama, Y. Tatara and Y. Fukuda, “Analysis of Electromigration-Induced Failures in Multilayered Interconnects”, IEEE Trans. on Electron Devices, ED-40 (1993) 1614-1620.
    連結:
  7. [10] H. Onoda, M. Kageyama and K. Hashimoto, “Al-Si Crystallographic-Orientation Transition in Al-Si/TiN Layered Structures and Electromigration Performance as Interconnects”, J. Appl. Phys., 77 (1995) 885-892.
    連結:
  8. [11] J.O. Olowolafe, H. kawasaki, C.C. Lee, J. Klein, F. Pintchovski, and D. Jawarani, “Effect of Interface Layer on the Microstructure and Electromigration Resistance of Al-Si-Cu Alloy on TiN/Ti Substrates”, Appl. Phys. Lett., 62 (1993) 2443-2445.
    連結:
  9. [12] C.K. Hu, M.B. Small, K.P. Robell, C. Stanis, P. Blauner, and P.S. Ho, “Electromigration Failure Due to Interfacial Diffusion in Fine Al Alloy Lines”, Appl. Phys. Lett., 62 (1993) 1023-1025.
    連結:
  10. [14] J.R. Black, “Electromigration-A Brief Survey and Some Recent Results”, IEEE Trans. on Electron Devices, ED-16 (1969) p. 338-348.
    連結:
  11. [16] K. Endo, T. Tatsumi, and T. Horiuchi, “Application of Fluorinated Amorphous Carbon Thin Films for Low Dielectric Constant Interlayer Dielectrics”, Jpn. J. Appl. Phys., 37 (1998) 1809-1814.
    連結:
  12. [17] T. Takeishi, H. Kudo, R. Shinohara, S. Fukuyama, J. Yamaguchi, and M. Yamada, “Plasma-Enhanced Chemical Vapor Deposition of Fluorocarbon Films with High Thermal Resistance and Low Dielectric Constants”, J. Electrochem. Soc., 144 (5) (1997) 1797-1802.
    連結:
  13. [18] T. Homma, “Characteristics of SiOF Films Formed Using TEOS and FTES at Room Temperature by CVD”, J. Electrochem. Soc., 143 (1996) 707-711.
    連結:
  14. [19] T. Homma, “Properties of Fluorinated Silicon Oxide Films Formed Using Fluorotriethoxysilane for Interlayer Dielectrics in Multilevel Interconnections”, J. Electrochem. Soc., 143 (3) (1996) 1084-1087.
    連結:
  15. [20] S. Takeishi, H. Kudoh, R. Shinohara, A. Tsukune. Y. Satoh, H. Miyazawa, H. Harada, and M. Yamada, “Stabilizing Dielectric Constants of Fluorine-Doped SiO2 Films by N2O-Plasma Annealing”, J. Electrochem. Soc., 143 (1) (1996) 381-385.
    連結:
  16. [21] H. Kudo, R. Shinohara, S. Takeishi, N. Awaji, and M. Yamada, “Dnsified SiOF Film Formation for Preventing Water Absorption” , Jpn. J. Appl. Phys., 35 (1996) 1583-1587.
    連結:
  17. [22] M. Maeda and T. Makino, “Low Dielectric Constant Amorphous SiBN Ternary Films Prepared by Plasma-Enhanced Deposition”, Jpn. J. Appl. Phys., 26 (1987) 660-665.
    連結:
  18. [23] M. Maeda, “Effect of Oxygen Doping into SiBN Ternary Film”, Jpn. J. Appl. Phys., 29 (1990) 1789-1794.
    連結:
  19. [24] S.V. Nguyen, T. Nguyen, H. Treichel, O. Spindler, “Plasma-Assisted Chemical Vapor Deposition and Characterization of Boron Nitride Films”, J. Electrochem. Soc., 141 (6) (1994) 1633-1638.
    連結:
  20. [25] P.K. Wu, G.R. Yang, J.F. McDonald, and T.M. Lu, “Surface Reaction and Stability of Parylene N and F Thin Films at Elevated Temperatures”, J. Electron. Mater., 24 (1995) 53-58.
    連結:
  21. [26] G.B. Blanchet, “Deposition of Amorphous Fluoropolymers Thin Films by Laser Ablation”, Appl. Phys. Lett., 62 (5) (1993) 479-481.
    連結:
  22. [27] C.I. Lang, G.R. Yang, J.A. Moore, and T.M. Lu, “Vapor Deposition of Very low k Polymer Films, Poly (Naphthalene), Poly (Fluorinated Naphthalene)”, Mater. Res. Soc. Symp. Proc., 381 (1995) 45-50.
    連結:
  23. [28] K. Endo and T. Tatsumi, “Preparation and Properties of Fluorinated Amorphous Carbon Thin Films by Plasma Enhanced Chemical Vapor Deposition”, Mater. Res. Soc. Symp. Proc., 381 (1995) 249-254.
    連結:
  24. [29] Tri Chemical Laboratory Inc., Company Document, 2000.
    連結:
  25. [32] T. Homma and Y. Murao, “A Spin-On-Glass Film Treatment Technology Using a Fluoroalkoxysilane Vapor at Room Temperature”, J. Electrochem. Soc., 140 (7) (1993) 2046-2051.
    連結:
  26. [34] T. Furusawa and Y. Homma, “Low Capacitance Multilevel Interconnect Using Low-k Organic Spin-on Glass for Quarter-Micro Hight-Speed ULSIs”, in JSAP/IEEE Symp, on VLSI Technol. Digest, 1995, 59-60.
    連結:
  27. [37] T. Homma, K. Kutsuzawa, K. Kunimune, and Y. Murao, “Stability of A New Polyimide Siloxane Film as Interlayer Dielectrics of ULSI Multilevel Interconnections”, Thin Solid Films, 235 (1993) 80-85.
    連結:
  28. [38] T. Homma, “Fluorinated Interlayer Dielectric Films in. ULSI Multilevel Interconnections”, J. Non-Cryst. Solids, 187 (1995) 49-59.
    連結:
  29. [40] C. Chiang, C. Pan, A.S. Mack, Y.I. Ling, Q. Vu, and D.B. Fraser, in Int. Conf. Solid State Devices and Materials (SSDM), Ext. Abst., Osaka, Japan, 1995, p. 174.
    連結:
  30. [41] N.H. Hendricks, K.S.Y. Lau, A.R. Smith, and W.B. Wan, “Synthesis and Characterization of Fhjorihated. Poly (Arylene Ethers)︰Organic Polymers for IC IMD”, Mater. Res. Soc. Symp. Proc., 381 (1995) 59-70.
    連結:
  31. [43] B. Li, T.D. Sullivan, T.C. Lee, and D. Badami, “Reliability Challenges for Copper Interconnects”, Microelectron. Reliab., 44 (2004) 365-380.
    連結:
  32. [44] X. Shi, A. Fung, S. Hsu, Z. Li, T. Nguyen, R. Socha, W. Conley, M. Dusa, “Dual Damascene Photo Process Using Negative Tone Resist”, Proceedings of SPIE, 3999 (2000) 835-842.
    連結:
  33. [46] M.H. Tsai and S.C. Sun, “Comparison of the Diffusion Barrier Properties of Chemical-Vapor-Deposited TaN and Sputtered TaN between Cu and Si”, J. Appl. Phys., 79 (9) (1996) 6932-6938.
    連結:
  34. [47] M. Stavrev, D. Fischer, A. Preub, C. Wenzel, and N. Mattern, “Study of Nanocrystalline Ta(N,O) Diffusion Barrier for Use in Cu Metallization” , Microelectronic Engineering, 33 (1997 ) 269-275.
    連結:
  35. [48] T. Oku, E. Kawakami, M. Uecubo, K. Takahiro, S. Yamaguchi, and M. Murakami, “Diffusion Barrier Property of TaN between Si and Cu”, Appl. Surf. Sci., 99 (1996) 265-272.
    連結:
  36. [49] 李育賢,“電化學鍍銅及鎳薄膜奈米機械性質與界面性質之研究”,國立中興大學材料科學與工程學系碩士論文,九十五年。
    連結:
  37. [50] J.B. Vella, S.M. Smith, A.A. Volinsky, and I.S. Adhihetty, “Adhesion Quantification of Post-CMP Copper to Amorphous SiN Passivation by NanoIndentation”, Mat. Res. Soc. Symp. Proc., 649 (2001) Q6.1.1-Q6.1.6.
    連結:
  38. [51] T.C. Wang, Y.L. Cheng, Y.L. Wang, T.E. Hsieh, G.J. Hwang and C.F. Chen, “Comparison of Charateristics and Integration of Copper Diffusion-Barrier Dielectrics", Thin Solid Films, 498 (2006) 36-42.
    連結:
  39. [52] K. Huller, M. Sydow, and G. Dietz, “Magnetic Anisotropy, Magnetostriction and Intermediate Range Order in Co-P Alloys”, J. Magn. Mater, 53 (1985) 269-274.
    連結:
  40. [53] Y. Shacham-Diamand, and S. Lopatin, “High Aspect Ratio Guarter-Micron Electroless Copper Integrated Technology”, J. Microelectronic Engineering, 37/38 (1997) p. 77.
    連結:
  41. [54] W.C. Chen, S.C. Lin, B.T. Dai, and M.S. Tsai, “Chemical Mechanical Polishing of Low-Dielectric-Constant Polymers︰Hydrogen Silsesquioxane and Methyl Silsesquioxane”, J. Electrochem. Soc., 146 (1999) 3004-3008.
    連結:
  42. [55].T. Liu, T.C. Chang, M.C. Huang, Y.L. Yang, Y.S. Mor, M.S. Tsai, H. Chung, J. Hou, and S.M. Sze, “Improvement of Post-Chemical Mechanical Planarization Characteristics on Organic Low k Methylsilsesquioxane as Intermetal Dielectric”, J. Electrochem. Soc., 147 (2000) 4313-4317.
    連結:
  43. [57] H.B. Huntington and A.R. Grone, “Current-Induced Marker Motion in Gold Wires”, J. Phys. Chem. Solids, 20 1-2 (1961) 76-87.
    連結:
  44. [58] C.K. Hu, L. Gignac, E. Liniger, and R. Rosenberg, “Electromigration in On-Chip Single/Dual Damascene Cu Interconnections”, J. Electrochem. Soc., 149 (7) (2002) G408-G415.
    連結:
  45. [59] R. Rosenberg, D.C. Edelstein, C.K. Hu, and K.P. Rodbell, “Copper Metallization for High Performance Silicon Technology”, Annu. Rev. Mater. Sci., 30 (2000) 229-262.
    連結:
  46. [60] C.S. Hau-Riege and C.V. Thompson, “Electromigration in Cu Interconnects with Very Different Grain Structures,” Appl. Phys. Lett., 78 (23) (2001) 3451-3453.
    連結:
  47. [61] S. Yokogawa, “Electromigration-Induced Void Growth Kinetics in SiNx-Passivated Single-Damascene Cu Lines”, J. Appl. Phys., 43 (2004) 5990-5996.
    連結:
  48. [63] E.T. Ogawa, K.D. Lee, V.A. Blaschke, and P.S. Ho, “Electromigration Reliability Issues in Dual-Damascene Cu Interconnections”, IEEE Trans. Reliab., 51 (4) (2002) 403-419.
    連結:
  49. [66] E.T. Ryan, J. Martin, G. Bonilla, S. Molis, T. Spooner, J. Widodo, J.H. Kim, E. Liniger, A. Grill, and C.K. Hu, “Line Resistance and Electromigration Variations Induced by Hydrogen-Based Plasma Modifications to the Silicon Carbonitride/Copper Interface”, J. Electrochem. Soc., 154 (7) (2007) H604-H610.
    連結:
  50. [67] A.V. Vairagar, S.G. Mhaisalkar, A. Krishnamoorthy, “Electromigration Behavior of Dual-Damascene Cu Interconnects Structure, Width, and Length Dependences”, Microelectron. Reliab., 44 (2004) 747-754.
    連結:
  51. [68] M. Hauschildt, M. Gall, S. Thrasher, P. Justison, L. Michaelson, R. Hernandez, H. Kawasaki, and P. S. Ho, “Analysis of Electromigration Statistics for Cu Interconnects”, Appl. Phys. Lett., 88 (2006) 211907-1~211907-3.
    連結:
  52. [69] A.V. Vairagar, S.G. Mhaisalkar, A. Krishnamoorthy, K.N. Tu, A.M. Gusak, M.A. Meyer, and E. Zschech, “In Situ Observation of Electromigration-Induced Void Migration in Dual-Damascene Cu Interconnect Structures”, Appl. Phys. Lett., 85 (13) (2004) 2502-2504.
    連結:
  53. [70] K.C. Chen, C.N. Liao, W.W. Wu, and L.J. Chen, “Direct Observation of Electromigration-Induced Surface Atomic Steps in Cu Lines by In Situ Transmission Electron Microscopy”, Appl. Phys. Lett., 90 (2007) 203101-1~203101-3.
    連結:
  54. [72] J.R. Lloyed, R.H. Koch, “Study of Electromigration-Induced Resistance and Resistance Decay in Al Thin-Film Conductors”, Appl. Phys. Lett., 52 (3) (1988) 194-196.
    連結:
  55. [73] T. Kwok and P.S. Ho, “Diffusion Phenomena in Thin Films and Microelectronic Materials”, edited by D. Grupta and P.S. Ho, Noyes Publications, Park Ridge, New Jersey (1988), p. 369.
    連結:
  56. [74] J.R. Black, “Electromigration Failure Modes in Aluminum Metallization for Semiconductor Devices”, Proc. IEEE, 57 (9) (1969) 1587-1594.
    連結:
  57. [77] J.W. McPherson and C.F. Dunn, “A Model for Stress-Induced Metal Notching and Voiding in Very Large-Scale-Integrated Al-Si(1﹪) Metallization”, J. Vac. Sci. & Tech., B5 (5) (1987) 1321-1325.
    連結:
  58. [82] M. Ueki, M. Hiroi, N. Ikarashi, T. Onodera, N. Furutake, M. Yshiki, and Y. Hayashi, “Suppression of Stress Induced Open Failures Between Via and Cu Wide Line by Inserting Ti Layer Under Ta/TaN Barrier”, in Proc. IEEE Int. Electron Devices Meeting (IEDM), 2002, 749-752.
    連結:
  59. [84] M. Lane and R. Rosenberg, “Interfacial Relationships in Microelectronic Devices,” in Materials Research Society (MRS) Symp. Proc., 766 (2003) 153-164.
    連結:
  60. [85] M.W. Lane, E.G. Liniger, and J.R. Lloyd, “Relationship between Interfacial Adhesion and Electromigration in Cu Metallization”, J. Appl. Phys., 93 (3) (2003) 1417-1421.
    連結:
  61. [86] S.M. Han, E. Aydil, “Structure and Chemical Composition of Fluorinated SiO2 Films Deposited Using SiF4/O2 Plasmas”, J. Vac. Sci. Technol., A15 (6) (1997) 2893-2904.
    連結:
  62. [87] S.W. Lim, Y. Shimogaki, Y. Nakano, K. Tada, “Preparation of Low Dielectric Constant F-Doped SiO2 Films by Plasma Enhanced Chemical Vapor Deposition”, Appl. Phys. Lett., 68 (6) (1996) 832-834.
    連結:
  63. [88] Y.L. Cheng, Y.L. Wang, H.C. Chen, and J.H. Lin, “Effect of Inter-Level Dielectrics on Electromigration in Damascene Copper Interconnect”, Thin Solid Films, 494 (2006) 315-319.
    連結:
  64. [89] A.V. Vairagar, S.G. Mhaisalkar, and A. Krishnamoorthy, “Effect of Surface Treatment on Electromigration in Sub-Micron Cu Damascene Interconnects”, Thin Solid Films, 462 (2004) 325-329.
    連結:
  65. [90] C.W. Chang, C.V. Thompson, C.L. Gan, K.L. Pey, W.K. Choi, Y.K. Lim, “Effects of Microvoids on the Line Width Dependence of Electromigration Failure of Dual-Damascene Copper Interconnects”, Appl. Phys. Lett., 90 (2007) 193505-1~193505-3.
    連結:
  66. [91] C.K. Hu, R. Rosenberg, and K.Y. Lee, “Electromigration Path in Cu Thin-Film Lines”, Appl. Phys. Lett., 74 (1999) 2945-2947.
    連結:
  67. [92] R. Gonella, “Key Reliability Issues for Copper Integration in Damascene Architecture”, Microelectronic Engineering, 55 (2001) 245-255.
    連結:
  68. [93] H. Nakajima and H.B. Huntington, “Electromigration of Cadmium in Lead”, J. Phys. Chem. Solids, 42 (1981) 171-184.
    連結:
  69. [94] M.Y. Hsieh and H.B. Huntington, J. Phys. Chem. Solids, 39 (1978) 861.
    連結:
  70. [95] J. Cho and C.V. Thompson, “Grain Size Dependence of Electromigration-Induced Failures in Narrow Interconnects”, Appl. Phys. Lett., 54 (1989) 2577-2579.
    連結:
  71. [96] E. Kinsbron, “A Model of the Width Dependence of Electromigration Lifetimes in Aluminum Thin-Film Stripes”, Appl. Phys. Lett., 36 (1980) 968-970.
    連結:
  72. [97] K.C. Chen, W.W. Wu, C.N. Liao, L.J. Chen, K.N. Tu, “Observation of Atomic Diffusion at Twin-Modified Grain Boundaries in Copper”, Science, 321 (22) (2008) 1066-1069.
    連結:
  73. [98] S. Vaidya, and A.K. Sinha, “Effecct of Texture and Grain Structure on Electromigration in Al-0.5﹪Cu Thin Films”, Thin Solid Films, 75 (1981) 253-259.
    連結:
  74. [99] S. Vaidya, D.B. Fraser, and W.S. Lindenberger, “Electromigration in Fine-Line Sputter-Gun Al”, J. Appl. Phys., 51 (1980) 4475-4482.
    連結:
  75. [100] D.B. Knorr, D.P. Tracy, and K.P. Rodbell, “Correlation of Texture with Electromigration Behavior in Al Metallization”, Appl. Phys. Lett., 59 (25) (1991) 3241-3243.
    連結:
  76. [101] C. Ryu, K. Kwon, A.L.S. Loke, H. Lee, T. Nogami, V.M. Dubin, R.A. Kavari, G.W. Ray, and S.S. Wong, “Microstructure and Reliability of Copper Interconnects”, IEEE Trans. on Electron Devices, 46 (6) (1999) 1113-1120.
    連結:
  77. [102] H. Lee, S.D. Lopatin, “The Influence of Barrier Types on the Microstructure and Electromigration Characteristics of Electroplated Copper”, Thin Solid Films, 492 (2005) 279-284.
    連結:
  78. [105] M.H. Lin, Y.L. Lin, K.P. Chang, K.C. Su, and T. Wang, “Copper Interconnect Electromigration Behaviors in Various Structures and Lifetime Improvement by Cap/Dielectric Interface Treatment”, Microelectron. Reliab., 45 (2005) 1061-1078.
    連結:
  79. [1] X.W. Lin and D. Pramanik, “Future Interconnent Technologies and Copper Metallization”, Solid State Technol., 41 (10) (1998) 63-69.
  80. [3] H. Xiao, “Introduction to Semiconductor Manufacturing Technology”, Prentice Hall, New Jersey (2001);羅正忠、張鼎張譯,台灣培生教育,台北市,2002 年,第 5、474、488 頁。
  81. [6] J.J. Sniegowski, “Moving the World with Surface Micromachining”, Solid State Technol., 39 (1996) 83-90.
  82. [13] 莊達人,“VLSI 製造技術”,高立出版社,台北市,2004 年,第 638、665 頁。
  83. [15] 陳力俊主編,“微電子材料與製程”,中國材料科學學會,新竹市,2000 年,第 302、324、345 頁。
  84. [30] W.W. Lee and P.S. Ho, “Low-Dielectric-Constant Materials for ULSI Interlayer-Dielectric Applications”, Materials Research Society (MRS) Symp. Proc., 22 (1997) 19-23.
  85. [31] M.J. Loboda and G.A. Toskey, “Understanding HSQ-Based Dielectric Film Processing”, Solid State Technol., 41 (1998) 99-105.
  86. [33] T. Furusawa, Y. Homma. Y. Shimamura, H. Morishima, Y. Yamamoto, and H. Satoh, in Int. VLSI Multilevel Interconnection Conf. Proc., Santa Clara, CA, 1994, p. 186.
  87. [35] N. Ohashi, H. Nezu, T. Fujiwara, and N. Owada, in Int. VLSI Multilevel Interconnection Conf. Proc., Santa Clara, CA, 1994, p. 137.
  88. [36] 蔡明蒔,戴寶通,戴雅麗,半導體科技,1999 年 11 月~2000 年 1 月 No.7 49-54.
  89. [39] 謝嘉民,半導體科技,2000 年 4~5 月 No.9 51-56.
  90. [42] S. Bothra, M. Kellam, and G. Garrou, in Int. VLSI Multilevel Interconnection Conf. Proc., Santa Clara, CA, 1993, p. 131.
  91. [45] R.S. Muller and T.I. Kamins, “Device Electronics for Integrated Circuits”, 2nd ed., John Wiley & Sons, New York (1986), 1-56.
  92. [56] H.B. Humtington, “Diffusion in Solids: Recent Development”, edited by A.S. Nowick and J.J. Burton, Academic Press, New York (1975), p. 303.
  93. [62] C.Y. Chang, S.M. Sze, ULSI Technology, McGraw-Hill, New York (1996), p. 663.
  94. [64] A.H. Fischer, A.V. Glasow, S. Penga, and F. Ungar, “Electromigration Failure Mechanism Studies on Copper Interconnects”, in Proceedings of the IEEE 2002 International Interconnect Technology Conference, 2002, 139-141.
  95. [65] 吳文發、秦玉龍,“電遷移效應對銅導線可靠度之影響”,奈米通訊第六卷第一期,1988 年。
  96. [71] 胡應強,“覆晶接點與錫電路之電遷移微結構變化模式研究”,國立中央大學化學工程與材料工程研究所博士論文,九十四年。
  97. [75] E.E. Lewis, “Introduction to Reliability Engineering”, Wiley, New York (1987);趙浡霖譯,科技圖書股份有限公司,台北市,1989 年,第 118 頁。
  98. [76] C.D. Hartfield, E.T. Ogawa, Y.J. Park, T.C. Chiu, Member, IEEE, and H. Guo, “Interface Reliability Assessments for Copper/Low-k Products”, IEEE Transactions on Device and Materials Reliability, 4 (2) (2004) 129-141.
  99. [78] E.T. Ogawa, J.W. McPherson, J.A. Rosal, K.J. Dickerson, T.C. Chiu, L.Y. Tsung, M.K. Jain, T.D. Bonifield, J.C. Ondrusek, and W.R. McKee, “Stress-Induced Voiding Under Vias Connected to Wide Cu Metal Leads”, in Proc. IEEE Int. Reliability Physics Symp. (IRPS), 2002, 312-321.
  100. [79] D. Edelstein, J. Heidenreich, R. Goldblatt, W. Cote, C. Uzoh, N. Lustig, P. Roper, T. McDevitt, W. Motsiff, A. Simon, J. Dukovic, R. Wachnik, H. Rathore, R. Schulz, L. Su, S. Luce, and J. Slattery, “Full Copper Wiring in A Sub-0.25 μm CMOS ULSI Technology”, in Proc. IEEE Int. Electron Devices Meeting (IEDM), 1997, 773-776.
  101. [80] T. Oshima, T. Tamaru, K. Ohmori, H. Aoki, H. Ashibara, T. Saito, H. Yamaguchi, M. Miyauchi, K. Torii, J. Murata, A. Satoh, H. Miyasaki, and K. Hinode, “Improvement of Thermal Stability of Via Resistance in Dual Damascene Cu Interconnection”, in Proc. IEEE Int. Electron Devices Meeting (IEDM), 2000, 123-126.
  102. [81] Y.K. Lim, Y.H. Lim, C.S. Seet, B.C. Zhang, K.L. Chok, K.H. See, T.J. Lee, L.C. Hsia, and K.L. Pey, “Stress-Induced Voiding in Multilevel Copper/Low-k Interconnects”, in Proc. IEEE Int. Reliability Physics Symp. (IRPS), 2004, 240-245.
  103. [83] H. Ashihara, K. Ishikawa, T. Oshima, K. Sasajima, N. Konishi, S. Uno, K. Tsugane, T. Iwasaki, and T. Saito, “A Suppression of Stress-Induced Voiding in Cu/Low-k Damascene Interconnects Using Self-Aligned Metal Capping Method”, in Proc. Advanced Metallization Conf. (AMC), 2003, 589-594.
  104. [103] C.K. Hu, L. Gignac, R. Rosenberg, E. Liniger, J. Rubino, C. Sambucetti, A. Domenicucci, X. Chen, and A.K. Stamper, “Reduced Electromigration of Cu Wires by Surface Coating”, Appl. Phys. Lett., 81 (2002) 1782-1784.
  105. [104] C.K. Hu, D. Canaperi, S.T. Chen, L.M. Gignac, S. Kaldor, M. Krishnan, S.G. Malhotra, E. Liniger, J.R. Lloyd, D.L. Rath, D. Restaino, R. Rosenberg, J. Rubino, S.C. Seo, A. Simon, S. Smith, and W.T. Tseng, “Electromigration Cu Mass Flow in Cu Interconnections”, Thin Solid Films, 504 (2006) 274-278.