Title

利用絲瓜絡固定化Lactobacillus casei發酵黃豆水解液產製乳酸

Translated Titles

Immobilization of Lactbacillus casei on loofa sponge fiber using soybean hydrolysate for lactic acid fermentation

DOI

10.6845/NCHU.2011.00058

Authors

葉佳蓉

Key Words

固定化 ; 乳酸 ; 重複批式發酵 ; 黃豆水解液 ; 絲瓜絡 ; Immobilization ; lactic acid ; repeated batch fermentation ; soybean hydrolysate ; loofah sponge fiber

PublicationName

中興大學食品暨應用生物科技學系所學位論文

Volume or Term/Year and Month of Publication

2011年

Academic Degree Category

碩士

Advisor

傅以中

Content Language

繁體中文

Chinese Abstract

細胞固定化是將微生物限制於固定空間之技術。固定化後的菌體有較高穩定性與重複利用性,較傳統的游離菌發酵法更有優勢。乳酸可以廣泛應用至食品、製藥、皮革、紡織工業上,甚至可以聚合成生物可分解的塑膠的原料-聚乳酸。利用於發酵生產乳酸的氮源因價格較昂貴,因此有不少研究使用低成本的農業及林業副產物來替代。 本實驗採用固定化Lactobacillus casei BCRC 10697,並以黃豆水解液作為氮源、葡萄糖為碳源進行乳酸發酵。比較固定化Lactobacillus casei膠球與固定化Lactobacillus casei絲瓜絡在批式發酵上之差異。並利用重複批式發酵法探討固定化Lactobacillus casei絲瓜絡的穩定性。另外進一步探討在固定時間內,如何將發酵液中的有限的氮源與碳源做有效的利用並產製乳酸。 結果顯示,本實驗之固定化絲瓜絡的乳酸產率為70.68 g/L,雖較固定化膠球77.60 g/L略低,但仍可以達到跟固定化膠球一樣的游離菌數,且固定化絲瓜絡的轉化率亦可達到90%以上。在固定化製程上,固定化絲瓜絡較為簡單且省時。利用絲瓜絡也可以避免在長時間發酵,膠體結構易被破壞並於換槽時流失,而且至少可以重複批式發酵七次以上。 在黃豆水解液的氮源利用上,25%氮源的最終游離乳酸菌數9.98 log CFU/mL、最大瞬間乳酸產率2.31±0.15 g/L/h (RSD=6.49%)比15%氮源的9.69 log CFU/mL與1.49±0.11 g/L/h (7.38%)高。在低碳源(葡萄糖濃度80 g/L、60 g/L及40 g/L)利用上,越低的碳源其葡萄糖會越快被消耗完,若以黃豆水解液作為乳酸發酵之氮源,則建議應維持在氮源25%以上,才能在本實驗條件下24 h產製33.35±1.30 g/L(RSD=3.90%)的乳酸,並且能將氮源與40 g/L葡萄糖耗盡。

English Abstract

Immobilization refers to the process of confining microorganisms to a certain area. Compared with traditional free cell fermentation, immobilized cell has more advantages. Cell immobilization offers including cell stability and recycling. Lactic acid is broadly used in food, pharmaceutical, tannery, and textile industries. Furthermore, it can also be polymerized to polylactic acid as biodegradable plastics. The cost of lactic acid products is expensive due to the high-priced nitrogen source which is one of the essential elements during the fermentation. Therefore, many studies use low-cost nitrogen source like by-product from agriculture or forestry. In this experiment, we use soybean hydrolysate as substitutive nitrogen source, glucose as carbon source, and compare the results of the immobilize Lactobacillus casei BCRC 10697 in Ca-alginate base and on loofah sponge fiber to produce lactic acid in batch fermentation. We use repeated batch fermentation to comprehend the stability of immobilization on loofah sponge fiber. Additionally, in order to figure out how Lactobacillus casei uses limited nitrogen source and carbon source effectively to produce lactic acid. The results showed that the production of lactic acid of immobilization on loofah sponge fiber is 70.68 g/L, which is less than immobilization in Ca-alginate base that is 77.60 g/L. But both of their yields could be above 90%. In process, immobilizating on loofah sponge fiber is easier and saving time. Ca-alginate base has low mechanical strength and would be disrupted owing to the build-up of pressure generated during cell division. Immobilization on loofah sponge fiber through physical adsorption can overcome these problems and can use 7 times at least in repeated batch fermentation. According to the results, using 25% soybean hydrolysate as a nitrogen source, the viable count was 9.98 log CFU/mL, the max yield of lactic acid was 2.31±0.15 g/L/h(RSD=6.49%). They were a little higher than 15% nitrogen source which were 9.69 log CFU/mL and 1.49±0.11 g/L/h(RSD=7.38%). The results showed that the less glucose concentration would be consumed more quickly in the condition of low carbon source (glucose concentration:80 g/L, 60 g/L, 40 g/L). Therefore, if using soybean hydrolysate as substitutive nitrogen source, it suggested that keeping above 25% nitrogen source would consume nitrogen source and carbon source (the initial glucose concentration of 40 g/L)effectively in 24 hours to produce lactic acid of 33.35±1.30 g/L(RSD=3.90%).

Topic Category 農業暨自然資源學院 > 食品暨應用生物科技學系所
生物農學 > 生物科學
Reference
  1. 陳建宇 (2007) Lactobacillus pentosus利用再生性資源生產乳酸之研究。國立中興大學生命科學系碩士論文。
    連結:
  2. 程麗君 (2002) 饋料批式發酵之進料策略探討。國立成功大學化學工程學系博士論文。
    連結:
  3. 葉例雅 (2009) 利用Lactobacillus casei在批式及饋料批式方法下產製乳酸並探討發酵期間成份之變化。國立中興大學食品暨應用生物科技學系碩士論文。
    連結:
  4. 廖雯怜 (2009) 以Lactobacillus casei在批式及饋料批式方法下利用黃豆水解液產製乳酸。國立中興大學食品暨應用生物科技學系碩士論文。
    連結:
  5. 劉淑慧 (2010) 利用Lactobacillus casei發酵黃豆水解液產製乳酸。國立中興大學食品暨應用生物科技學系碩士論文。
    連結:
  6. Abe, S.I., Takagi, M. (1991) Simultaneous saccharification and fermentation of cellulose to lactic acid. Biotechnol Bioeng 37:93–96.
    連結:
  7. Adinarayana, K., Bapi Raju, K.V.V.S.N., Ellaiah, P. (2004) Investigations on alkaline protease production with B. subtilis PE-11 immobilized incalcium alginate gel beads. Process Biochem 39:1331–1339.
    連結:
  8. Akerberg, C., Hofvendahl, K., Zacchi, G., Hahn–Hagerdal, B. (1998) Modeling the influence of pH, temperature, glucose and lactic acid concentrations on the kinetics of lactic acid production by Lactococus lactis spp. lactis ATCC 19435 in whole wheat flour. Appl Microbiol Biotechnol 49:682–690.
    連結:
  9. Anisha, G.S., Prema, P. (2007) Cell immobilization technique for the enhanced production of α-galactosidase by Streptomyces griseoloalbus.Biores Technol 99:3325–3330.
    連結:
  10. Caplice, E., Fitzgerald, G.F. (1999) Food fermentations: role of microorganisms in food production and preservation. Int J Food Microbiol 50:131-149.
    連結:
  11. Cassidy, M.B., Lee, H ., Trevors, J.T. (1995) Environmental applications of immobilized microilized microbial cells:a review. J Ind Microb 16:79-101.
    連結:
  12. Cavazzoni V, Manzoni M, Craveri R. (1988) Ammonium lactate from deproteinized alfalfa juice by Streptococcus faecium. J Ind Microbiol 3:373-376.
    連結:
  13. Chantawongvuti, R., Veerajetbodithat, J., Jaturapuree, P. Muangnapoh,C. (2010) Immobilization of Lactobacillus salivarius ATCC 11741 on loofa sponge coated with chitosan for lactic acid fermentation. J. Microbiol. Biotechnol 20(1):110-116
    連結:
  14. Condon, S. (1987) Responses of lactic acid bacteria to oxygen. FEMS Microbiol Rev 46: 269–280.
    連結:
  15. Darget, K.I., Skjak-Brak, G., Stokke, B.J. (2006) Similarities and differences between alginic acid gels and ionically crosslinked alginate gels. Food hydrocolloids 20 :170–175.
    連結:
  16. Datta, R., Henry, M. (2006) Lactic acid: recent advances in products,processes and technologies – a review. J Chem Technol Biotechnol 81:1119–1129.
    連結:
  17. Datta, R., Tsai, S.P., Bonsignore, P., Moon, S.H., Frank, J.R. (1995) Technological and economic potential of poly (lactic acid) and lactic acid derivatives. FEMS MicrobioRev 16:221-231.
    連結:
  18. de Figueroa, R.M., Oliver, G., Benito de Cardenas, I.L. (2001) Influence of temperature on flavour compound production from citrate by Lactobacillus rhamnosus ATCC 7469. Microbiol Res 155: 257–262.
    連結:
  19. Dervakos, G.A. (1996) “Viable Cell Immobilization” , in Studies in Viable Cell Immobilization, edited by Colin Webb, pp. 1-17.
    連結:
  20. de Vos W.M. (1996) Metabolic engineering of sugar catabolism in lactic acid bacteria. A van Leeuw 70:223-42.
    連結:
  21. Ding, S., Tan, T. (2006) L-lactic acid production by Lactobacillus casei fermentation using different fed-batch feeding strategies. Process Biochem 41:1451–1454.
    連結:
  22. Doleyres, Y., Lacroix, C. (2005) Technologies with free and immobilized cells for probiotic bifidobacteria production and protection. International Dairy Journal 15(10): 973-988.
    連結:
  23. Freeman, A., Lily, M.D. (1998) Effect of processing parameters on the feasibility and operational stability of immobilizied viable microbial cells. Enzyme Microb Tech 23:335-345.
    連結:
  24. Garrigues, C., Loubiere, P., Lindley, N.D., Cocaign–Bousquet, M. (1997) Control of shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD+ ratio. JBacteriol 179:5282–5287.
    連結:
  25. Goksungur, Y., Guvenc, U. (1997) Batch and continuous production of lactic acid from beet molasses by Lactobacillus delbrueckii IFO 3202. J Chem Technol Biotechnol 69:399–404.
    連結:
  26. Goksungur, Y., Guvenc, U. (1999) Production of lactic acid from beet molasses by calcium alginate Immobilized Lactobacillus delbrueckii IFO 3202. J Chem Technol Biotechnol 74:131-136.
    連結:
  27. Groboillot, A., Boadi, D.K., Poncelet, D., Neufeld, R.J., (1994) Immobilization of cells for application in the food-industry. Crit. Rev. Biotechnol 14:75–107.
    連結:
  28. Guoqiang, D., Kaul, R., Mattiasson, B. (1991) Evaluation of alginate immobilized Lactobacillus casei for lactate production. J Appl Microb Biotechnol 36:309–14.
    連結:
  29. Gupta, B., Revagade, N., Hilborn, F. (2007) Poly (lactic acid) fiber: An Overview. Prog Polyn Sci 32:455-482.
    連結:
  30. Hofvendahl, K., Hahn-Hagerdal, B. (1997) L-lactic acid production from whole wheat flour hydrolysate using strains of Lactobacilli and Lactococci. Enzyme Microb Technol 20:301-307.
    連結:
  31. Hofvendahl, K., Hahn-Hagerdal, B. (2000) Factors affecting the fermentative lactic acid production from renewable resources. Enzyme Microb Technol 26:87-107.
    連結:
  32. Hoshino, K., Taniguchi, M., Marumoto, H., Shimizu, K., Fuji, M. (1991) Continuos lactic acid production from raw starch in a fermentation system using a reveribly soluble-autoprecipitating amylase and immobilized cells of Lactobacillus casei. Agric Biol Chem 55:479-485.
    連結:
  33. Hsieh, C.M., Yang, F.C., Eugene, L.I. (1999) The effect of soy protein hydrolyzates on fermentation by Lactobacillus amylovorus. Process Biochem 34:173-9.
    連結:
  34. Hujanen, M., Linko, S., Linko, Y.Y., Leisola, M. (2001) Optimization of media and cultivation conditions for L(+)(S)-lactic acid production by Lactobacillus casei NRRL B-441. Appl Microbiol Biotechnol 56:126-130.
    連結:
  35. Hujanen, M., Linko, Y.Y. (1996) Effect of temperature and variousnitrogen sources on L(+)-lactic acid production by Lactobacillus casei. Appl Microbiol Biotechnol 45:307–313.
    連結:
  36. Idris, A., Suzana, W. (2006) Effect of sodium alginate concentration, bead diameter, initial pH and temperature on lactic acid production from pineapple waste using immobilized Lactobacillus delbrueckii. Process Biochem 41:1117-1123.
    連結:
  37. Iqbal, M., Saeed, A., Edyvean, R.G.J., Sullivan B.O. and Styring P. (2005) Production of fungal biomass immobilized loofa sponge (FBILS)-discs for the removal of heavy metal ions and chlorinated compounds from aqueous solution. Biotechnol. Lett 27:1319–1323.
    連結:
  38. John, R.P., Nampoothiri, K.M., Pandey, A. (2007) Fermentative production of lactic acid from biomass:an overview on process developments and future perspectives. Appl Microbiol Biotechnol 74: 524-534.
    連結:
  39. Kandler, O.(1983) Carbohydrate metabolism in lactic acid bacteria. Antonie van Leeuwenhoek 49:209-224.
    連結:
  40. Kierstan, M., Bucke, C. (1977) Immobilization of microbial cells, subcellular organelles and enzymes in calcium alginate gels. Biotechnol. Bioeng 19:387-398.
    連結:
  41. Klaenhammer, T.R., Barrangou, B., Buck, B.L., Azcarate-Peril, M.A., Altermann, E. (2005) Genomic features of lactic acid bacteria effecting bioprocessing and health.FEMS Microbiol Rev 29:393-409.
    連結:
  42. Kourkoutas, Y., Bekatorou, A., Banatb, I. M., Marchant, R., Koutinas, A. A. (2004) Immobilization technologies and support materials suitable inalcohol beverages production: a review. Food Microbiology 2: 377-397.
    連結:
  43. Larsen, B., Salem, D.M.S.A., Sallam, M.A.E., Mishrikey, M.M., Beltagy, A.I. (2003) Characterization of the alginates from algae harvested at the Egyptian Red Sea coast. Carbohydrate research 338 :2325-2336.
    連結:
  44. Leon, R., Fernandes, P., Pinheiro, H. M., Cabral, J. M. S. (1998) Whole-cell biocatalysis in organic media. Enzyme Microb Techn 23:483-500.
    連結:
  45. Lim, L.T., Aurasb, R., Rubinob, M. (2008) Processing technologies for poly (lactic acid). Prog Polym Sci 33: 820-52.
    連結:
  46. Lin, J., Zhou, M., Zhou, X., Luo, S., Lu, Y. (2007) Extractive fermentation of l-lactic acid with immobilized Rhizopus oryzae in a three-phase fluidized bed. Chem Eng Process 46:369–374.
    連結:
  47. Litchfield, J.H. (1996) Microbiological production of lactic acid. Adv Appl Microbiol 42: 45–95.
    連結:
  48. Lu, Z., Lu, M., He, F., Yu, L. (2009) An economical approach for D-lactic acid production utilizing unpolished rice from aging paddy as major nutrient source. Bioresour technol 100:2026-2031.
    連結:
  49. Lunt, J. (1998) Large scale production, properties and commercial applications of polylactic acid polymers. Polym Deg Stab 59:145–52.
    連結:
  50. Mizuno, H., Saito, T., Iso, N., Onda, N., Noda, K., Takada, K. (1983) Mannuronic toguluronic acid ratios of alginic acids prepared from various brown seaweeds.Bulletin of Japansese Society of Scientific Fisheries 49(10) :1591-1593.
    連結:
  51. Monteagudo, J.M., Rodriguez, L., Rincon, J., Fuertes, J. (1997) Kinetics of lactic acid fermentation by Lactobacillus delbrueckii grown on beet molasses. J Chem Technol Biotechnol 68:271– 276.
    連結:
  52. Narayanan, N., Roychoudhury, P.K., Srivastava, A. (2004) L (+) lactic acid fermentation and its product polymerization. Electr J Biotechnol 7:167-179.
    連結:
  53. Ogbonna, J.C., Tomiyama, S., Tanaka, H. (1996) Development of a method for immobilization of non-flocculating cells in loofa (Luffa cylindrica) sponge. Process Biochemistry 31(8):737–744.
    連結:
  54. Ogbonna, J.C., Liu, Y.C., Liu Y.K., Tanka H.(1994) Loofa (Luffa cylindrica) sponge as a carries for microbial cell immobilization. J. Ferment. Bioeng 78 (6):437–44
    連結:
  55. Prashanth, S.J., Mulimani, V.H. (2005) Soymilk oligosaccharide hydrolysis by Aspergillus oryzae α-galactosidase immobilized in calcium alginate. Process Biochem 40:1199–1205.
    連結:
  56. Rangsayatorn, N., Pokethitiyook, P., Upatham, E.S., Lanza, G.R. (2004) Cadmium biosorption by cells of Spirulina platensis TISTR 8217 immobilized in alginate and silica gel. Environment International 30: 57– 63.
    連結:
  57. Rao, C.S., Prakasham, R.S., Rao, A.B., Yadav, J.S. (2008) Production of L (+) lactic acid by Lactobacillus delbrueckii immobilized infunctionalized alginate matrices. World J Microbiol Biotechnol 24:1411–1415.
    連結:
  58. Reddy, G., Altaf, M., Naveena, B.J., Venkateshwar, M., Kummar, E.V. (2008) Amylolytic bacterial lactic acid fermentation — A review. Biotechnol Adv 26:22-34.
    連結:
  59. Rincon, J., Fuertes, J., Moya, A., Monteagudo, J.M., Rodriguez, L. (1993) Optimization of the fermentation of whey by Lactobacillus casei. A Biotechnol 13:323–331.
    連結:
  60. RingO, E., Gatesoupe, F.J. (1998) Lactic acid bacteria in fish: a review. Aquaculture 160:177-203.
    連結:
  61. Roble, N.D., Ogbonna, J.C., Tanaka, H. (2003) L-lactic acid production from raw cassava starch in a circulating loop bioreactor with cells immobilized in loofa (Luffa cylindrica). Biotechnology Letters 25 :1093-1098
    連結:
  62. Roukas, T., Kotzekidou, P. (1998) Lactic acid production from deproteinized whey by mixed cultures of free and coimmobilized Lactobacillus casei and Lactococcus lactis cells using fedbatch culture. Enzyme Microb Technol 22:199-204.
    連結:
  63. Saucedo, J.E.N., Audras, B., Jan, S., Bazinet, C.E., Barbotin, J.N. (1994) Factors affecting densities, distribution and growth patterns of cells inside immobilization supports. FEMS Microbiology Reviews 14: 93-98.
    連結:
  64. Saudagar, P.S., Shaligram, N.S., Singhal, R.S. (2008) Immobilization of Streptomyces clavuligerus on loofah sponge for the production of clavulanic acid. Bioresource Technology 99:2250-2253
    連結:
  65. Schmidt, S., Padukone, N. (1997) Production of lactic acid from wastepaper as a cellulosic feedstock. J Ind Microbial Biotechnol 18:10-14.
    連結:
  66. Schnepp, Z., Wimbush, S.C., Mann, S., Hall, S.R. (2010) Alginate-mediated routes to the selective synthesis of complex metal oxide nanostructures. Cryst Eng Comm 12:1410-1415.
    連結:
  67. Senthuran, A., Senthuran, V., Rajni, H.K., Mattiasson, B. (1999) Lactic acid production by immobilized Lactobacillus casei in recycle batch reactor: a step towards optimization. J Biotechnol 73:61–70.
    連結:
  68. Silva, E.M., Yang, S.T. (1995) Kinetics and stability of a fibrous-bed bioreactor for continuous production of lactic acid from unsupplemented acid whey. J Biotechnol 41:59 -70.
    連結:
  69. Simpson, N.E., Stabler, C.L., Simpson, C.P., Sambanis, A., Constantinidis, I (2004) The role of the CaCl2–guluronic acid interaction on alginate encapsulated βTC3 cells. Biomaterials 25:2603–2610.
    連結:
  70. Sjoberg, A., Persson, I., Quednau, M., Hahn–Hagerdal, B. (1995) The Influence of limiting and non-limiting growth conditions on glucose And maltose metabolism in Lactococcus lactis spp. lactis strains. Appl Microbiol Biotechnol 42:931–938.
    連結:
  71. Sodergard, A., Stolt, M. (2002) Properties of lactic acid based polymers and their correlation with composition. Prog Polym Sci 27 :1123-1163.
    連結:
  72. Stabler, C., Wilk, K., Sambanis, A., Constantinidis, I. (2001) The effects of alginate composition on encapsulated βTC3 cells. Biomaterials 22:1301-1310.
    連結:
  73. Stiles, M.E., Holzapfel, W.H. (1997) Lactic acid bacteria of food and their current taxonomy. Int J Food Microbiol 36:1-29.
    連結:
  74. Taqieddin, E., Amiji, M. (2004) Enzyme immobilization in novel alginate chitosan core-shell microcapsules. Biomaterials 25:1937–1945.
    連結:
  75. Tay, A., Yang, ST. (2002) Production of L(+)-lactic acid from glucose and starch by immobilized cells of Rhizopus oryzae in a rotating fibrousbed bioreactor. Biotechnol Bioeng 80:1-12.
    連結:
  76. Tsen, J.H., Huang, H.Y., Lin, Y.P., King, A.E. (2007) Freezing resistance improvement of Lactobacillus reuteri by using cell immobilization. J Microbiol Methods 70:561–564.
    連結:
  77. van Ness, J.H. (1981) Hydroxy Carboxylic Acids, in Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed, 13:80-103, J. Wiley & Sons, New York.
    連結:
  78. van Niel, E.W.J., Hahn–Ha‥gerdal, B. (1999) Nutrient requirements of lactococci in defined growth media. Appl Microbiol Biotechnol 52:617–627.
    連結:
  79. Ye, K., Jin, S., Shimizu, K. (1996) Performance improvement of lactic acid fermentation by multistage extractive fermentation. J Ferment Bioeng 81:240–246.
    連結:
  80. Yun, J.S., Wee, Y.J., Ryu, H.W. (2003) Production of optically pure L(+)-lactic acid from various carbohydrates by batch fermentation of Enterococcus faecalis RKY1. Enzyme Microb Technol 33:416-423.
    連結:
  81. Zhang, D.X., Cheryan, M. (1994) Starch to lactic acid in a continuous membrane bioreactor. Process Biochem 29:145–150.
    連結:
  82. 千畑一郎 (1982) 固定化酶。河北人出版社
  83. 朱惟君 (2001) 化作春泥更護花-神奇的生物可以分解塑膠。環保署資源回收月刊七月號。
  84. 李繼煌 (2006) 聚乳酸之開發與應用綜論。朝陽科技大學應用化學系碩 士論文。
  85. 陳俊亮,楊麗傑,霍貴成 (2008) 益生菌降解大豆源α-低聚醣和醛類物質。食品與發酵工業 34:20-23。
  86. 陳俊榮 (2011) 黃豆營養與健康。Available from: http://food.doh.gov.tw/FoodNew/Default.aspx
  87. 陳則華,李理 (2007) 利用大豆黃漿水的發酵研究。食品研究與開發 28:42-5。
  88. 陳國誠 (1999) 微生物酵素工程學。藝軒圖書出版社。
  89. 陳國誠 (2000) 生物固定化技術與產物應用。茂昌圖書。
  90. 陳淑瑾 (1995) 食物製備原理與應用。睿煜出版社,第四版。
  91. 陳盛樂 (2004) 真菌Aspergillus terrus固定化技術之探討-包埋法。朝陽科技大學應用化學系碩士論文。
  92. 彭志英 (2004) 食品酵素學。九州圖書文物有限公司。
  93. 葉佩玲 (2001) 黃豆進口及加工業者避險策略之選擇──GARCH模型之應用。國立屏東科技大學農企業管理學系碩士論文。
  94. 賈有元 (2004) 綠藻Chlorella pyrenoidosa NCHU-6之最適異營培養條件暨培養方法之研究。國立中興大學食品暨應用生物科技學系碩士論文。
  95. 應紹舜 (1985) 臺灣高等植物彩色圖鑑。臺北巿 著者
  96. 羅毓秀 (2005) 應用乳酸菌Lactobacillus pentosus從再生性資源生成D型、L型乳酸與D型、L型乳酸脫氫酶基因之分析。國立中興大學生命科學系。
  97. 黨建章 (2005) 發酵技術概論。新文京出版社。
  98. Anonymous. (2011) 黃豆加工流程與技術。Available from :http://www.ttet.com.tw/
  99. Chibata, I., Tosa, T., Shibatani, T. (1992) The industrial production of optically active compounds by immobilized biocatalysts. In:Chirality in Industry.(Collins, A.N., Sheldrake, G.N. and Crosby, J.,Eds), John Wiley& Sons, INC.,New York, pp. 351-370.
  100. Fordyce, A.M., Crow, V.L., Thomas, T.D. (1984) Regulation of product formation during glucose or lactose limitation in nongrowing cells ofStreptococcus lactis. Appl Environ Microbiol 48:332–337.
  101. Hartmeiter, W. (1988) General principles. In:Immobilized Biocatalysate, Chapter 1. Springer-Verlag, Berlin Heidelberg, New York, pp.3-21.
  102. Hofvendahl, K. (1998) Fermentation of wheat starch hydrolysate by Lactococcus lactis: factors affecting product formation. Lund, Sweden: Lund University. PhD Thesis.
  103. Iqbal, M., Shah W.A., Zafar, S.I. (1993) Biostructural materials: Novel supports for cell immobilization. In: Proceedings of International Symposium on Biotechnology for Sustainable Development 15–20:393–400.
  104. Laskin, A. I. (1985) Enzymes and immobilized cells in biotechnology. Benjamin/Cummings Pub. Co.
  105. Mehaia, M.A., Cheryan, M. (1987) Production of lactic acid from sweet whey permeate concentrates. Process Biochem 22:185–188.
  106. Slokoska, L.S., Angelova, M.B. (1998) Immobilization of polymethyl galacturonase producing Aspergillus niger on luffa sponge material. Zeitschrift fur Naturforschung 53C:968-972.
  107. Thomas, T.D. (1987) Acetate production from lactate and citrate bynon-starter bacteria in Cheddar cheese. N Z J Dairy Sci Technol 22: 25- 38.
  108. Thomas, T.D., Turner, K.W., Crow, V.L. (1980) Galactose fermentation by Streptococcus cremoris: pathways, products, and regulation. J Bacteriol 144:672– 682.
  109. Waser, K.L. (2005) Separationof Lactic Acid:RecentAdvances. Chem. Biochem. Eng 19 (2) :159-172.
  110. Wee, Y.J., Kim, J.N., Ryu, H.W. (2006) Biotechnological production of lactic acid and its recent applications. Food Technol Biotechnol 44 (2) :163–172.
  111. Wijffels, R.H. , Buitelaar, R.M., Bucke, C., Tramper, J. (1996) Immobilized cells:basics and applications. Prog. Biotechnol 11.
  112. Yoo, I.K., Chang, H.N., Lee, E.G., Chang, Y.K., Moon, S.H. (1997) By-product formation in cell-recycled continuous culture of Lactobacillus casei. Biotechnol Lett 19:237–240.
Times Cited
  1. 侯琇文(2012)。探討三辛胺在批式發酵系統中進行乳酸萃取。中興大學食品暨應用生物科技學系所學位論文。2012。1-69。