Title

質量偏心對長跨徑橋樑氣動穩定性影響之實驗研究

Translated Titles

Experimental study of the effect of mass ccentricity of long span bridges

DOI

10.6845/NCHU.2011.00081

Authors

蔡宗雄

Key Words

懸吊式橋樑 ; 風洞實驗 ; 斷面模型 ; 質量偏心 ; 攻角 ; Suspension bridges ; Wind tunnel ; Cross-section model ; Eccentric mass ; angle of attack

PublicationName

中興大學土木工程學系所學位論文

Volume or Term/Year and Month of Publication

2011年

Academic Degree Category

碩士

Advisor

方富民

Content Language

繁體中文

Chinese Abstract

本研究係以實驗方式,在均勻流場之情況下,針對質量偏心效應對懸吊式橋樑氣動不穩定性進行探討。實驗於中興大學農林試驗場內之土木系風洞實驗室中進行,研究以簡單矩形斷面模型作為橋體基本外型,藉由改變來流風速、第一模態(垂直向)與第二模態(扭轉向)之頻率比、質量偏心位置(0%、±5%、±10%)及攻角(0°、4°、8°)下,探討橋體動態反應之影響。 研究以固定第一模態頻率之情況下,改變兩模態之頻率比,依據實驗所得橋體垂直向位移反應與扭轉向角度變化之均方根值分析不同質量偏心相應於不同攻角造成之效應。 研究結果發現,在同一偏心情況下頻率比越高則氣動穩定性愈佳,其顫振臨界風速隨頻率增加上升。而同一頻率比時,攻角0°下游偏心有較佳之氣動穩定性、其次為無偏心,最差為上游偏心。攻角4°則無明顯趨勢;攻角8°時,頻率比1.2及1.35除在偏心量±5%外,氣動穩定性依序為下游偏心、無偏心、上游偏心。 頻率比為1.2時,在上游偏心-10%攻角0°、4°、8°與下游偏心+10%攻角0°之動態反應與其他頻率比之結果有所差異。

English Abstract

In this study, I investigated the eccentricity effect on the aerodynamic instability of a suspension bridge in the uniform flow field. The experiments were conducted in Wind Tunnel Laboratory of the Agricultural Experimental Station of the National Chung Hsing University. I used a simple rectangular cross-section model as a bridge’s basic body shape. The effects on the dynamic reaction of the bridge plate were investigated based on a two-dimensional approach. Measurements of the dynamic reaction of the bridge plate were implemented by changing the flow speed, frequency ratio of the first mode (heaving direction) and the second mode (torsional direction), eccentric mass site (0%, ±5%, ±10%) and angle of attack (0°, 4°, 8°). On the premise, the first mode (heaving direction) frequency was constant. At different frequency ratios, the eccentric mass will cause interaction effects on the bridge. The interaction effects were investigated by analyzing the root-mean-square values of the vertical displacement of the bridge’s body and the changes of the angles in the torsional direction. According to the experimental results, I found that, under the same eccentricity conditions, the aerodynamic stability improved while the frequency ratios increased. The flutter critical velocity increased along with the frequency ratios. Under the same frequencies, when the angle of attack was 0°, the aerodynamic stability was the best when the eccentric mass site was downstream, and then non-eccentric, with the worst when upstream; when the angle of attack was 8°, frequency ratio at 1.2 and 1.35 except when the eccentric value was ±5%, the aerodynamic stability was the best when the eccentric mass site was downstream, and then non-eccentric, with the worst when upstream The dynamic reactions from the conditions while the frequency ratio was 1.2, the upstream eccentricity was -10% and the angles of attack were 0°, 4°, 8°, and that while the downstream eccentricity was +10% and the angle of attack was 0° were different from those of the other frequency ratios.

Topic Category 工學院 > 土木工程學系所
工程學 > 土木與建築工程
Reference
  1. 1.Bienkiewicz,B.,Wind-Tunnel Study of Effects of Geometry Modification On Aerodynamics of a Cable-Stayed Bridge Deck,”Journal of Wind Engineering.and Industrial Aerodynamics,Vol.26,pp.325-339,1987.
    連結:
  2. 2.Bienkiewicz,B.,Cermak,J.E.and Peterka J.A.,Wind-Tunnel Study of Aerodynamic Stability and Response of a Cabled-Stayed Bridge Deck,”Journal of Wind Engineering and Industrial Aerodynamics,Vol.26,pp.341-352,1987.
    連結:
  3. 3.Irwin, H.P.A.H.,“Centre of Rotation for Torsion Vibration of Bridges,”Journal of Wind Engineering and Industrial Aerodynamics,Vol.4,pp.123-132,1979.
    連結:
  4. 4.Larsen,A.and Walther,J.H.,“Aeroelastic Analysis of Bridge Girder Sections Based on Discrete Vortex Simulations,”Journal of Wind Engineering and Industrial Aerodynamics,Vol.67-68,pp.235-265,1996.
    連結:
  5. 5.Larsen,A.,“Prediction of Aeroelastic Stability of Suspension Bridges During Erection,”Journal of Wind Engineering and Industrial Aerodynamics,Vol.72,pp.275-274,1997.
    連結:
  6. 6.Larsen,A.and Walther,J.H.,“Discrete Vortex Simulation of Flow Around Five Generic Bridge Deck Sections,”Journal of Wind Engineering and Industrial Aerodynamics, Vol.77-78,pp. 591-602,1998.
    連結:
  7. 7.Matsumoto,M.Yoshizumi,F.,Yabutani,T.,Abe,K.and Nakajima,N.,“Flutter Stabilization and Heaving-Branch Flutter,”Journal of Wind Engineering and Industrial Aerodynamics,Vol.83,pp.289-299,1999.
    連結:
  8. 8. Lin, Y.Y. and Cheng, C.M., “Performance of Multiple Tuned Mass Dampers for Suppressing Buffeting Response and Increasing Flutter Speed of Long-span Bridges,”Journal of the Chinese Institute of Engineers,Vol.24,No.3,pp.273-288,2001.
    連結:
  9. 9.Lin,Y.Y.and Lieu,Y.L.,“Geometrically Nonlinear Analysis of Cable-stayed Bridges Subject to Wind Excitations,” Journal of the Chinese Institute of Engineers,Vol.26,No.4,pp.503-511,2003.
    連結:
  10. 10.Xinjun Zhang,“Investigation on aerodynamic stability of long-span suspension bridges under erection,”Journal of Wind Engineering and Industrial Aerodynamics, Vol.92,pp.1-8,2004.
    連結:
  11. 11.Cheng-Yang Chung, Fuh-Min Fang, Tsong-Shiong Tsai, Yang Jun,“The dynamic instability of a suspension bridge with mass eccentricities,”2011.
    連結:
  12. 12.Tang, Man-Chung,“Guidelines for the Design of Cable-stayed Bridges,” American Society of Civil Engineers,1992.
    連結:
  13. 13.Mathivat,J.,“The Cantilever Construction of Prestressed Concrete Bridge,”A Wiley-Interscience Publication,1983.
    連結:
  14. 14.Noda,M.,Utsunomiya,H.,Nagao,F.,Kanda,M.,and Shiraishi, N.,“Effects of Oscillation Amplitude on Aerodynamic, Derivatives,”Journal of Wind Engineering and Industrial Aerodynamics,Vol.91,pp.101-111,2003.
    連結:
  15. 15.Phongkumsing,S.,Wilde,K.and Fujino,Y.,“Analytical Study on Flutter Suppression by Eccentric Mass Method on FEM Model of Long-Span Suspension Bridge,”Journal of Wind Engineering and Industrial Aerodynamics,Vol.89,pp.515-534,2001.
    連結:
  16. 17.Yasuharu Nakamura,Shigehira Ozono,“The Effects of Turbulence on a Separated and Reattaching Flow,”Journal of Fluid Mechanics,Vol.178,pp.77-490,1987.
    連結:
  17. 24.陳啟鈿,“偏心效應對懸吊式橋樑氣動不穩定性之影響”,中興大學土木工程研究所碩士論文,2010。
    連結:
  18. 參考文獻
  19. 16.Scanlan,R.H.and Tomko,J.J.,“Airfoil and Bridge Deck Flutter Derivatives,”Journal of Engineering, Mechanics Division,Vol.97,pp.1717-1737,1971.
  20. 18.蔡同宏,“第二高速公路後續計畫燕巢九如段,高屏溪橋(主橋)風洞試驗報告”,研究報告書,中華民國交通部台灣區國道新建工程局,1994。
  21. 19.林世權,“風攻角和紊流場對長跨度橋樑抖振之影響”,淡江大學土木工程研究所碩士論文,1995。
  22. 20.方富民,“高鐵台中烏日站區聯外道路系統跨愈旱溪拱承協張橋風洞試驗研究”,研究報告書,財團法人中興土木科技發展文教基金會,2000。
  23. 21.藍倉連,“斷面寬深比對長跨度橋樑顫振與抖振之影響”,淡江大學土木工程研究所碩士論文,2001。
  24. 22.張鈞豪,“梯形斷面懸吊式橋樑受風效應之數值模擬與風洞試驗研究”,中興大學土木工程研究所碩士論文,2002。
  25. 23.黎益肇,“簡單幾何截面長跨度橋樑之氣彈力行為探討”,中興大學土木工程研究所博士論文,2005。
Times Cited
  1. 陳沛兆(2013)。不同斷面外形長跨度橋梁氣動力穩定性之風洞試驗研究。中興大學土木工程學系所學位論文。2013。1-102。