Translated Titles

The Microstructure and Electrical Properties of YBCO Microbridge with Variable Thickness Fabricated by Focused Ion Beam



Key Words

微橋 ; 弱連結 ; 非晶態結構 ; 鎵離子破壞 ; microbridge ; weak link ; amorphous structure ; Ga+ damage



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract

本論文中,我們將討論不同連結區域(link region)厚度所製作出高溫超導釔鋇銅氧( YB2C3O7-δ-YBCO)微橋其微結構與電性分析。利用聚焦離子束(Focus Ion Beam,FIB),製作奈米尺度下不同厚度的YBCO微橋,當微橋接面厚度控制在奈米尺度下,將呈現弱連結效應。 利用聚焦離子束在厚度約150 nm、寬度5~8μm的微橋上進行局部性的離子蝕刻,將微橋接面寬度控制在1μm、厚度介於40-90 nm間,並利用場發射穿透式電子顯微鏡(FE-TEM)檢驗不同厚度弱連結處的微結構。發現Ga+離子束會佈植破壞成非晶態結構(amorphous structure) 橫向、縱向約20-30 nm,當厚度低於40 nm時底部幾乎沒有完整的YBCO晶格結構;隨著微橋厚度變少,超導特性會隨著厚度變淺而變差,臨界溫度(Tc)與臨界電流(Ic)會跟著變小。在退火過程中氧含量成功的恢復,微橋的超導特性會變好。

English Abstract

In this paper, we controlled the thickness about the link region produced by the microbridges of high-temperature superconducting YBCO (YB2C3O7-δ). In this thesis, Focus Ion Beam (FIB) was used to control different thickness of YBCO microbridges. And when the thickness of the microbridge was controlled under the nanometer scale, it showed weak link behavior. YBCO microbridges were fabricated with widths of 5-8 μm and thickness 150 nm using standard techniques of photolithography and Ar+ ion milling. To control the thickness of the micro-bridge was maintained between 40 and 90 nm. Using field-emission transmission electron microscope (FE-TEM) to observe the structure of the Variable Thickness Bridge (VTB), Ga+ damages horizontally and vertically into the amorphous structure about 20-30 nm. When the thickness was below 40 nm, there was little complete part of YBCO structure in the bottom. As the thickness of the micro-bridge decreased, critical temperature (Tc) and critical current (Ic) became smaller. The successful recovery of oxygen content during the annealing process, the superconductivity of the microbridge became better.

Topic Category 基礎與應用科學 > 物理
理學院 > 物理學系所
  1. [1] B. D. Josephson, Physics Letters, 1, 251-253 (1962)
  2. [2] W. F. Avrin and M. B. Simmonds, IEEE. Tran. Mag. 27, 3359 (1991)
  3. [8] N. Bergeal, X. Grison, and J. Lesueur, Appl. Phys. Lett. 87, 102502 (2005)
  4. [14] 詹逢駿,國立中興大學碩士論文”高溫超導釔鋇銅氧不同厚度微橋的約瑟芬效應"
  5. [15] Sidney Shaprio, Phys. Rev. Lett. 11, 80-82 (1963)
  6. [16] Antonio Barone, “Physics and Applications of the Josephson Effect”, Wiley-VCH. (1982)
  7. [18] 陳啟東, 淺談微影蝕刻技術 物裡雙月刊 (21期4卷)1998年8
  8. [20] Zheng Cui, “Nanofabrication”, Springer (2008)
  9. [22] NAN YAO,”Focused Ion Beam systems”,Cambridge Univ Pr (2007)
  10. [3] K. Takeda, H. Mori, A. Yamaguchi, H. Ishimoto, T. Hakmura, S. Kuri, T. Hozumi, and S. Ohkoshi, Rev. Sci. Instrum. 79, 033909 (2008)
  11. [4] S. H. Liao, S. C. Hsu, C. C. Lin, H. E. Horng, J. C. Chen, M. J. Chen, C. H. Wu, and H. C. Yang, Supercon. Sci. Technol. 16, 1426 (2004)
  12. [5] K. Char, M. S. Colclough, S. M. Garrison, N. Mewman, G. Zahsrchuk, Appl. Phys. Lett. 59, 733(1991)
  13. [6] C. H. Wu, M. J. Chen, J. C. Chen, K. L. Chen, and H. C. Yang, Rev. Sci. Instrum. 77, 033901 (2006)
  14. [7] Wang,Wan; Yamazaji, Masashi; Lee, Kiejin; Iguchi, Ienari, Phys. Rev. B 60, 4272-4276 (1999)
  15. [9] J. P. Cleuziou, W. Wensdorfer, V. Bouchiat, T. Ondarc, and M. Monthoux, Nature Nanotechnology 1, 53 (2006)
  16. [10] R. Frielinghaus, I. E. Batov, M. Weides, H. Kohlstedt, R. Calarco, and Th. Schaper, Appl. Phys. Lett. 96, 132504 (2010)
  17. [11] V. N. Gubanov, V. P. Koshelets, and G. A. Ovsyannikov, JEPT. Lett. 21, 226 (1975)
  18. [12] G. Burnell, D. J. Kang, H. N. Lee, S. H. Moon, B. Oh, and M. G. Blamire, Appl. Phys. Lett. 79, 3464 (2001)
  19. [13] G. Burnell, D. J. Kang, D. A. Ansell, H. N. Lee, S. H. Moon, B. Oh, E. J. Tartel, and M. G. Blamirel, Appl. Phys. Lett. 81, 102 (2002)
  20. [17] Neeraj Khare, “Handbook of High-Temperature Superconductor Electronics”, Marcel Dekker, Inc. (2003)
  21. [19] J. Clarke and A. I. Braginski, “Tne SQUID Handbook,vol. Fundamentals and Technology of SQUIDs and SQUIDs system”,
  22. Wiley-VCH (2006)
  23. [21] Lucille A. Giannuzzi and Fred A. Stevie, “Introduction to Focused
  24. Ion Beam”, Springer (2004)