Title

金線連莖腐病菌調查、分子標誌的開發及田間分佈

Translated Titles

Investgation of Fusarium oxysporum f. sp. anoectochili, development of molecular marker and distribution in field

Authors

許子娟

Key Words

金線連莖腐病 ; F. oxysporum f. sp. anoectochili ; 病原型 ; 套袋式盆缽栽培 ; Anoectochilus stem rot ; F. oxysporum f. sp. anoectochili ; pathotype ; plastic bag cultivation method (PBCM)

PublicationName

中興大學植物病理學系所學位論文

Volume or Term/Year and Month of Publication

2016年

Academic Degree Category

碩士

Advisor

鍾文鑫

Content Language

繁體中文

Chinese Abstract

尖鐮孢菌 (Fusarium oxysporum) 是一種土棲性真菌,可引起多種作物的萎凋病,且遍佈於全世界,依其感染寄主的不同可區分為不同分化型 (forma specialis),現今已有超過150種的分化型及生理小種有被紀錄。在台灣,由F. oxysporum f. sp. anoectochili (Foa) 引起之金線連莖腐病可依據其菌落形態區分為白色菌絲型cottony alba (CA) 及分生子座型sporodochial (S),且依核醣體轉錄間隔區間 (IGS) 序列之差異可分成兩個獨立分子群。由於以往開放式栽培環境下造成金線連莖腐病發生相當嚴重,故現今農民多改採用塑膠袋套袋栽培法 (plastic bag cultivation method, PBCM) 減少莖腐病於種植期間之快速傳播。本研究重新於PBCM栽培環境下調查金線連病害相與發生率,調查結果顯示,套袋金線連有莖腐病、花腐病及葉斑病的發生,其中約有25%之金線連植株發生莖腐病,於冬季開花期有高達57%植株花梗出現花腐病徵。將罹病植株進行分離純化病原菌,結果顯示所分離之菌株仍以Foa為主,且形態與分子序列鑑定多數屬CA型菌株,少數為S型菌株,且CA型菌株多分離自於莖、葉、花梗等植物組織上,S型相對只於莖與葉部被分離到。病原性測試結果顯示,來自莖與葉部組織之CA型菌株毒力高於S型,然分離自花梗之CA型菌株之病原性最弱。本研究為建立快速鑑定並診斷金線連莖腐或花腐病之平台,本研究透過增幅Foa菌株之IGS全長與其他作物萎凋病菌比較其序列差異,設計出2-F/6-R及3-F/7-R兩組引子對,可個別鑑別CA與S 型菌株。於專一性測定,所設計之引子對無法增幅其他15種分化型作物萎凋病菌菌株、非病原性F. oxysporum及溫室常見之真菌(Penicillum屬、Trichoderma屬等真菌)。於靈敏度測試結果得知,兩組專一性引子對最低可偵測菌株DNA濃度為10-2 ng/ μl;此外嘗試混合兩組引子對同時增幅CA與S兩型菌株之可能性,結果得知當CA型與S型兩菌株的引子對以8: 2比例混合時,可同時偵測到CA型與S型。以新設計專一性引子於偵測溫室環境之病原菌存在,結果證實,CA 型菌株孢子懸浮於溫室空氣中及在植株體內偵測到之比例較S 型高;反之,S 型菌株在泥炭土及地面搜集沙塵存在之比例較CA 型高,而在蒐集之盆缽樣本中CA與S 型偵測到之比例約各佔一半,且使用過之盆缽皆可偵測到Foa菌株之存在。根據PCR偵測結果,病原菌潛在感染源可能主要來自於種植時所使用之盆缽,後續便以消毒處理盆缽探討對金線連種植之影響,結果顯示未處理過滅菌處理盆缽之處理組,莖腐病發生率最高,而經2000 ppm次氯酸鈣消毒後之盆缽,發生莖腐病之比例最低。綜合本研究結果,透過所設計之專一性引子對,得知造成田間莖腐病發生之主要感染源可能來自於盆缽之重複使用、病原菌孢子之空氣傳播或是低濃度之病原菌孢子殘存於未使用之泥炭土中,以次氯酸鈣消毒、滅菌器皿與栽培介質,加強田間衛生管理,可有效降低病害發生之比例。

English Abstract

Fusarium oxysporum (Fo) is the causal agent of Fusarium wilt disease in many crops and is well represented among the communities of soilborne fungi and in every type of soil all over the world. The pathogen has several specialized forms (known as forma specialis, f. sp.) according to the host it specifically infects. Based on the plant species and cultivars, Fo is classified into more than 150 formae speciales and races. Stem rot disease of jewel orchids (Anoectochilus formosanus) caused by F. oxysporum f. sp. anoectochili (Foa) could be separated into two colony types, cottony alba (CA) type and sporodochial (S) type, based on the morphology characteristics and the nucleotides polymorphism of intergenic spacer (IGS) region. Previous studies indicated that the Foa could disperse easily and cause serious yield loss throughout the production area in Taiwan. Therefore, the plastic bag cultivation method (PBCM) was been developed for reducing the Foa dissemination in the greenhouses. In this study, the field survey of the plant diseases on jewel orchids were investigated in PBCM greenhouses. The results indicated that 25% of jewel orchids were showed stem rot symptom and the flower rot symptom were also been observed with 57% of disease rate on flowers of jewel orchids. All the pathogens were been isolated and identified as the Foa. Among these isolates, the CA type were the dominant type of Foa isolates and could be obtained from stem, leaf and flower tissues; the S type only could be obtained from stem and leaf tissues. The pathogenicity tests indicated that the CA type isolates collected from stem and leaf tissues showed high virulence than S type isolates, but the CA type isolates collected from flower tissues were not. In order to develop a rapid diagnosis system of the jewel orchid diseases, the specific primers of 2-F/6-R and 3-F/7-R were designed successfully based on IGS sequence for identifying the CA and S type isolates, respectively. In addition, the two primer pairs (2-F/6-R and 3-F/7-R) showed highly specificity and could differentiate the target isolates from other formae speciales, non-pathogenic Fo and widespread fungal species such as Penicillium sp. and Trichoderma spp.. The sensitive tests revealed that the primers 2-F/6-R and 3-F/7-R could amplify the target fragment from as little as 10 pg (10-2 ng) template DNA. In multiplex PCR experiments, the two type primers mixed with the proportion of 8: 2 (CA+S type) could amplified the both target fragments of two type of Foa genomic DNA at the same times. These primers were then used to detect the CA and S type of Foa in environments, the results indicated that the CA type isolates were dominant in atmosphere and plant tissues samples; the S type isolates were dominant in soil and dust samples; all the reused pot samples could found the Foa pathogen, and both type of Foa could been identified and share the same rate. Among these PCR results, , the reused pots might be the major inoculation source of Foa in field. Therefore, the effect of sterilization methods on disease development of the Foa was been evaluated. The result indicated that the sterilization with 2000 ppm Ca(ClO)2 could reduce the stem rot disease effectively. According to these results, the pathogen colonized on the reused pots, Foa air-borne spores and low concentration of Foa existed in the unused peat moss might be the key factor in the disease cycle of the stem rot disease of jewel orchid. Following the good agricultural practices with the effective sterilization method could reduce the disease development in greenhouse.

Topic Category 農業暨自然資源學院 > 植物病理學系所
生物農學 > 植物學
Reference
  1. Anderson, J.B., and Stasovski, E. 1992. Molecular phylogeny of northern hemisphere species of Armillaria. Mycologia 84:505-516.
    連結:
  2. Appel, D. J., and Gordon, T. R. 1996. Relationships among pathogenic and nonpathogenic isolates of Fusarium oxysporum based on the partial sequence of the intergenic spacer region of the ribosomal DNA. Molecular Plant-Microbe Interactions 9: 125-138.
    連結:
  3. Bacon, C., and Hinton, D. 1996. Symptomless endophytic colonization of maize by Fusarium moniliforme. Canadian Journal of Botany 74:1195-1202.
    連結:
  4. Bayraktar, H., Dolar, F., and Maden, S. 2008. Use of RAPD and ISSR markers in detection of genetic variation and population structure among Fusarium oxysporum f. sp. ciceris isolates on chickpea in Turkey. Journal of Phytopathology 156:146-154.
    連結:
  5. Bennett, R. 2012. Survival of Fusarium oxysporum f. sp. vasinfectum chlamydospores under solarization temperatures. Plant Disease 96:1564-1568.
    連結:
  6. Bergman, B., and Bakker-Van Der Voort, M.A. 1979. Latent infection in tulip bulbs by Fusarium oxysporum. Netherlands Journal of Plant Pathology 85:187-195.
    連結:
  7. Booth, C. 1977. Fusarium. Laboratory guide to the identification of the major species. Commonwealth Mycological Institute.
    連結:
  8. Chang, D.C., Chou, L., and Lee, G. 2007. New cultivation methods for Anoectochilus formosanus Hayata. Orchid Science and Biotechnology 1:56-60.
    連結:
  9. Cheng, K.-T., Fu, L.-C., Wang, C.-S., Hsu, F.-L., and Tsay, H.-S. 1998. Identification of Anoectochilus formosanus and Anoectochilus koshunensis species with RAPD markers. Planta Medica 64:46-49.
    連結:
  10. Chou, L.-C., and Chang, D.C.-N. 2004. Asymbiotic and symbiotic seed germination of Anoectochilus formosanus and Haemaria discolor and their F1 hybrids. Botanical Bulletin of Academia Sinica 45:143-147.
    連結:
  11. Dissanayake, M.L.M.C., Kashima, R., Tanaka, S., and Ito, S.-i. 2009. Pathogenic variation and molecular characterization of Fusarium species isolated from wilted Welsh onion in Japan. Journal of General Plant Pathology 75:37-45.
    連結:
  12. Dita, M., Waalwijk, C., Buddenhagen, I., Souza Jr, M., and Kema, G. 2010. A molecular diagnostic for tropical race 4 of the banana fusarium wilt pathogen. Plant Pathology 59:348-357.
    連結:
  13. Fourie G, Steenkamp ET, Gordon TR, Viljoen A, 2009. Evolutionary relationships among the vegetative compatibility groups of Fusarium oxysporum f. sp. cubense. Applied and Environmental Microbiology 75: 4770–81.
    連結:
  14. Gamliel, A., Katan, T., Yunis, H., and Katan, J. 1996. Fusarium wilt and crown rot of sweet basil: involvement of soilborne and airborne inoculum. Phytopathology 86:56-62.
    連結:
  15. Hirano, Y., and Arie, T. 2006. PCR-based differentiation of Fusarium oxysporum f. sp. lycopersici and radicis-lycopersici and races of F. oxysporum f. sp. lycopersici. Journal of General Plant Pathology 72: 273-283.
    連結:
  16. Hsieh, S., Chuang, W., and Huang, S. 1994. Stem rot of Taiwan Anoectochilus and its causal organism. Plant Pathology Bulletin 3:140-146.
    連結:
  17. Huang, L.W., Wang, C.J., Lin, Y.S., Chung, W.C., and Chung, W.H. 2014. Stem rot of jewel orchids caused by a new forma specialis, Fusarium oxysporum f. sp. anoectochili in Taiwan. Plant Pathology 63:539-547.
    連結:
  18. Katan, T., Shlevin, E., and Katan, J. 1997. Sporulation of Fusarium oxysporum f. sp. lycopersici on stem surfaces of tomato plants and aerial dissemination of inoculum. Phytopathology 87:712-719.
    連結:
  19. Kawabe, M., Kobayashi, Y., Okada, G., Yamaguchi, I., Teraoka, T., and Arie, T. 2005. Three evolutionary lineages of tomato wilt pathogen, Fusarium oxysporum f. sp. lycopersici, based on sequence of IGS, MAT 1 and pg1, are each composed of isolates of a single mating type and single or closly related vegetative compatibility group. Journal of General Plant Pathology 71: 263-272.
    連結:
  20. Ket, N., Hahn, E., Park, S., Chakrabarty, D., and Paek, K. 2004. Micropropagation of an endangered orchid Anoectochilus formosanus. Biologia Plantarum 48:339-344.
    連結:
  21. Latunde-Dada, A., O'connell, R., Nash, C., and Lucas, J. 1999. Stomatal penetration of cowpea (Vigna unguiculata) leaves by a Colletotrichum species causing latent anthracnose. Plant Pathology 48:777-785.
    連結:
  22. Lievens, B., Rep, M., and Thomma, B.P. 2008. Recent developments in the molecular discrimination of formae speciales of Fusarium oxysporum. Pest Management Science 64:781-788.
    連結:
  23. Lin, Y.-H., Chen, K.-S., Chang, J.-Y., Wan, Y.-L., Hsu, C.-C., Huang, J.-W., and Chang, P.-F.L. 2010. Development of the molecular methods for rapid detection and differentiation of Fusarium oxysporum and F. oxysporum f. sp. niveum in Taiwan. New Biotechnology 27:409-418.
    連結:
  24. Lin, Y.-H., Su, C.-C., Chao, C.-P., Chen, C.-Y., Chang, C.-J., Huang, J.-W., and Chang, P.-F.L. 2013. A molecular diagnosis method using real-time PCR for quantification and detection of Fusarium oxysporum f. sp. cubense race 4. European Journal of Plant Pathology 135:395-405.
    連結:
  25. Lin, Y. S., Wang, P. H. & Lo, C. T. 1988. Variation and survival of Fusarium oxysporum f.sp. pisi race 2. Plant Protection Bulletin 30:15-23. (in Chinese)
    連結:
  26. Mbofung, G.C.Y., and Pryor, B.M. 2010. A PCR-based assay for detection of Fusarium oxysporum f. sp. lactucae in lettuce seed. Plant Disease 94:860-866.
    連結:
  27. Mbofung, G.Y., Hong, S.G., and Pryor, B.M. 2007. Phylogeny of Fusarium oxysporum f. sp. lactucae inferred from mitochondrial small subunit, elongation factor 1-α, and nuclear ribosomal intergenic spacer sequence data. Phytopathology 97:87-98.
    連結:
  28. Nalawade, S. M., A. P. Sagare, C. Y. Lee, C. L. Kao, and H. S. Tsay. 2003. Studies on tissue culture of Chinese medicinal plant resources in Taiwan and their sustainable utilization. Botanical Bulletin of Academia Sinica 44:79–98.
    連結:
  29. Photita, W., Lumyong, S., and Lumyong, P. 2001. Endophytic fungi of wild banana (Musa acuminata) at doi Suthep Pui National Park, Thailand. Mycological Research 105:1508-1513.
    連結:
  30. Punja, Z., and Parker, M. 2000. Development of Fusarium root and stem rot, a new disease on greenhouse cucumber in British Columbia, caused by Fusarium oxysporum f. sp. radicis-cucumerinum. Canadian Journal of Plant Pathology 22:349-363.
    連結:
  31. Rep, M., Van Der Does, H.C., Meijer, M., Van Wijk, R., Houterman, P.M., Dekker, H.L., De Koster, C.G., and Cornelissen, B.J.C. 2004. A small, cysteine-rich protein secreted by Fusarium oxysporum during colonization of xylem vessels is required for I-3-mediated resistance in tomato. Molecular Microbiology 53:1373-1383.
    連結:
  32. Sasaki, K., Nakahara, K., Shigyo, M., Tanaka, S., and Ito, S.-i. 2015. Detection and quantification of onion isolates of Fusarium oxysporum f. sp. cepae in onion plant. Journal of General Plant Pathology 81:232-236.
    連結:
  33. Srinivasan, K., Gilardi, G., Spadaro, D., GARIBALDI, A., and GULLINO, M.L. 2011. Molecular characterization through IGS sequencing of formae speciales of Fusarium oxysporum pathogenic on lamb’s lettuce. Phytopathologia Mediterranea 49:309-320.
    連結:
  34. Tsao, P.H. 1970. Selective media for isolation of pathogenic fungi. Annual Review of Phytopathology 8:157-186.
    連結:
  35. White, T.J., Bruns, T., Lee, S., and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: A Guide to Methods and Applications 18:315-322.
    連結:
  36. Yoshida, S., Hiradate, S., Fujii, Y., and Shirata, A. 2000. Colletotrichum dematium produces phytotoxins in anthracnose lesions of mulberry leaves. Phytopathology 90:285-291.
    連結:
  37. Zambounis, A., Paplomatas, E., and Tsaftaris, A. 2007. Intergenic spacer-RFLP analysis and direct quantification of Australian Fusarium oxysporum f. sp. vasinfectum isolates from soil and infected cotton tissues. Plant Disease 91:1564-1573.
    連結:
  38. Chang, S. F. 1999. Integrated control of basal stem rot and stem rot of Taiwan Anoectochilus. M. S. Thesis. Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan, 89 pp. (in Chinese).
  39. Farm, K., Garden, B., Siu, G.L., Fellowes, J.R., Lau, M.W., Shing, L.K., Graham, T., Chan, B.P., Sai-Chit, N., and Fellowes, J.R. 2003. Report of a Rapid Biodiversity Assessment at Dawangling Headwater Forest Nature Reserve, West Guangxi, China, August 1999. South China Forest Biodiversity Survey Report Series (Online Simplified Version).
  40. Huang, S.H., Lin, Y.S., and Kuo, M. S. 1994. Inoculum sources, spread and control of Pythium root rot of hydroponic vegetables. Plant Protection Bulletin 86:41-52. (in Chinese)
  41. Larkin, M.A., Blackshields, G., Brown, N., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., and Lopez, R. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23:2947-2948.
  42. Lee, G. C. 2001. Identification and improvement of production techniques for Anoectochilus formosanus Hayata and orchid mycorrhizal fungi. PhD Thesis. Department of Horticulture, National Taiwan University. (in Chinese)
  43. Lee IH, 2004. Identification for the causal agent of common bean wilt and comparison of virulence and physiological characteristics of its wild- and variant-type isolates. M. S. Thesis. Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan. (in Chinese)
  44. Lin, W. 2007. Study of health keeping effects of Anoectochilus formosana Hayata. Agriculture World 288:8-13.
  45. Nash, S.M., and Snyder, W.C. 1962. Quantitative estimations by plate counts of propagules of the bean root rot Fusarium in field soils. Phytopathology 52:567-572.
  46. Sun, S. K., and Huang, J. W. 1979. Variation in the watermelon wilt pathogen, Fusarium oxysporum f. sp. niveum. Botanical Bulletin of Academia Sinica 21: 313-321. (in Chinese).
  47. Sun, S. K., and Huang, J. W. 1996. Plant Fusarium disease in Taiwan. Shihwei Publisher, Taichung, Taiwan, 170 pp. (in Chinese).
  48. Teuscher, H. 1978. Collector's item: Erythrodes, Goodyera, Haemaria and Macodes, with Anoectochilus. Amer. Orchid Society Bulletin 47:121-129.
  49. Tsai, C. C. 2007. Biocontrol of stem rot of Taiwan Anoectochilus caused by Fusarium oxysporum Schl. Ph. D. Thesis. Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan, 142 pp. (in Chinese).