Title

利用電化學方法製備氧化鐵於不銹鋼上應用於薄膜鋰電池陽極之研究

Translated Titles

Preparation of α-Fe2O3 on stainless steel as anodes for Li-ion thin film battery by electrochemical method

Authors

董仲霖

Key Words

電化學沉積 ; 氧化鐵 ; 薄膜鋰離子電池 ; Electrolytic deposition ; α-Fe2O3 ; thin film lithium ion batteries

PublicationName

中興大學材料科學與工程學系所學位論文

Volume or Term/Year and Month of Publication

2009年

Academic Degree Category

碩士

Advisor

顏秀崗

Content Language

英文

Chinese Abstract

摘要 本研究利用電解沉積方式於電解液中將α-Fe2O3製備在304不鏽鋼基材上應用於薄膜鋰離子電池。在電解液極化測試中,陰極反應可分為三個區間表示: (1). O2 + 4H+ + 4e- → 2H2O (0.12 to -0.4 V) (2). 2H+ + 2e- → H2 (-0.4 to 0.88 V) (3). 2H+ + 2e- → H2 and/or Fe(OH)2+ + H2O + 2e- → FeOOH + H2 (-0.88 to -2.0 V) 初鍍膜成分為α-FeOOH且表面含有微孔洞,在250oC 熱處理後縮合形成厚度為10μm,晶粒約10nm的α-Fe2O3 均勻薄膜。半電池經循環伏安(CV)測試,氧化電位為1.0與1.8V,還原電位為1.2與0.63V(Li/Li+)。隨著衝放電電流密度的提高,放電平台相對降低且伴隨著晶粒粗化及電容量的下降,隨著衝放電次數增加也有晶粒粗化現象產生。顯然鋰離子在α-Fe2O3的嵌入與嵌出之擴散速率決定了反應速率,α-Fe2O3晶粒的粗化現象讓鋰離子的擴散路徑增長,導致電容量衰退。

English Abstract

Abstract Electrolytic α-Fe2O3 thin film on 304 stainless steel was carried out in aqueous solution for anodes in thin film lithium ion batteries. Through polarization tests, Cathodic reaction in aqueous solution were verified into 3 regions, including: (1). O2 + 4H+ + 4e- → 2H2O (0.12V to -0.4V) (2). 2H+ + 2e- → H2 (-0.4V to 0.88V) (3). 2H+ + 2e- → H2 and/or Fe(OH)2+ + H2O + 2e- → FeOOH + H2 (-0.88V to -2.0V) The porous as-deposited film was α-FeOOH, and condensed into uniform α-Fe2O3 at 250oC revealing thickness 10μm and particle size 10 nm. Cyclic voltammetry (CV) measurements showed oxidation peaks at 1.0 and 1.8 V, and reduction peaks at 1.2 and 0.63 V (Li/Li+). The first voltage of the discharge plateau was lowered and with increasing current density, accompanied with the coarsening of nano-sized particles and the reduced capacity. The coarsening effects were also found with increasing cycle number. It was suggested that the diffusion flux of Li+ in and out from α-Fe2O3 dominated the electrochemical reaction rate. The coarsening of α-Fe2O3 particles elongated the diffusion length of Li+, resulting in the capacity decay.

Topic Category 工學院 > 材料科學與工程學系所
工程學 > 工程學總論
Reference
  1. 3. J.Schoonman, E.M Kelder J.Power Source 68 (1997)65-68.
    連結:
  2. 8. S.Y. Zeng, K.B. Tang, T.W. Li, J.Colloid Interf. Sci 312 (2007) 513.
    連結:
  3. 9. C. Gong, D. Chen, X. Jiao, Q. Wang, J. Mater. Chem. 12 (2002) 1844.
    連結:
  4. 11. B.D Pietro, M. Patriarca B. Scrosati, J. Power Source 8 (1982) 289-299.
    連結:
  5. 12. J.J Xu, G. Jain, Electrochem. Solid State Lett. 6 (2001) 190.
    連結:
  6. 19. W.H. Ho, S.K. Yen, J. Electrochem. Soc. A506 (2005) 152.
    連結:
  7. 21. H.C. Liu, S.K. Yen, J. Power Source 159 (2006) 245.
    連結:
  8. 22. W.H. Ho, S.K. Yen, Surf. Coat. Techol. 201 (2007)7100.
    連結:
  9. 23. H.C. Liu, S.K. Yen, J. Power Source 166 (2007) 478.
    連結:
  10. 26. B.D. Cullity Elements of X-Ray Diffraction, Addison-wesly, Reading, MA(1978)..
    連結:
  11. 27. M. V. Reddy, Tin Yu, Chorng-Haur Sow, Ze Xiang Shen, Chwee Teck Lim, G. V. Subba Rao, amd B. V. R. Chowdari ADVANCED FUNCTIONAL MATERIALS. 10.1002/adfm.20061186.
    連結:
  12. 28. J. Raman spectroscopy 1997 (28) 873-878.
    連結:
  13. 29. M.M. Thackeray, W.I.E. David, J.B. Goodenough, Solid State Chem. 55 (1984) 280.
    連結:
  14. 30. M.M. Thackeray, W.I.E. David, J.B. Goodenough, Mater. Res. Bull. 17 (1982) 785.
    連結:
  15. Reference
  16. 1. QinetiQ Ltd, Haslar, Gosport, Hants PO12 2AG, UK J.Power Source 136 (2004) 285-289.
  17. 2. O.Besenhard, "Handbook of Battery Materials", Wiley-vch(1999)
  18. 4. P. Poizot, S.Laruelle, S.Grugeon, L.Dupont, J.-M. Tarascon, Nature 2000, 407,496.
  19. 5. A. S. Arico, P. G. Bruce, B.Scrosati, J.-M. Tarascon, W. V. Schalkwijk, Nat. Mater. 2005, 4, 366.
  20. 6. M. Rosso, C. Brissot, A. Teyssot, M.Dolle, L. sannier, J.-M. Tarascon, R. Bouchetc, S. Lascaud, Electrochim. Acta 51 (2006) 5334.
  21. 7. D. Larcher, C. Masquelier, D. Bonnin, Y. Chabre, V. Masson, J.B., Leriche, J.-M. Tarascon, J. Electrochem. Soc. 150 (2003) A133.
  22. 10. D. Larcher, D. Bonnin, R. Cortes, I. Rivals, L. Personnaz, J.-M. Tarascon, J.Electronchem. Soc. 150 (2003) A1643.
  23. 13. Hyun Gil Cha, Chang Woo Kim, Young Hwan Kim, Mi Hyang Jung, Eun Sun Ji, Bijoy K. Das, Ju Chang Kim, Young Soo Kang. Thin Solid Films (2008).
  24. 14. Jonathan R. Scheffe, Andrea Frances, David M. King, Xinhua Liang, Brittany A. Branch, Andrew S. Cavanagh, Steven M. George, Alan W. Weimer. (2008).
  25. 15. T. Sasaki, X. Zeng, N. Koshizaki, Mater. Res. Symp. Proc. 526(1998) 67 (MRS).
  26. 16. J.A Glasscock, P.R.F. Barnes, I.C. Plumb, A. Bendavid, P.J. Martin. Thin Solid Films 516 (2008) 1716-1724.
  27. 17. J. Sarradin, M.Ribes, A. Guessous, K. Elkacemi. Solid State Ionics. 112 (1998) 35 -40.
  28. 18. X. Qian, X.Zhang, Y. Bai, T. Li, X. Tang, E. Wang, S. Dong, J. Nanopart. Res 2(2) (2000) 191.
  29. 20. W.H. Ho, S.K. Yen, Solid-State Lett. C134(2005)8.
  30. 24. W.H. Ho, C.F. Li, H.C. Liu, S.K. Yen, J. Power Source 175 (2008) 897.
  31. 25. Han-Chang Liu, Wen-Hsien Ho, Ching-Fei Li, Shiow-Kang Yen, J.Electrochem. Soc.155 (12) E178-E182 (2008).
  32. 31. Yanna NuLi, Peng Zhang, Zaiping Guo, P.Munroe, Huakun Liu, Electrochimica Acta 53 (2008) 4213-4218.
  33. 32. Yanna NuLi, Peng Zhang, Zaiping Guo, P.Munroe, Huakun Liu, J. Power Source (2008)
Times Cited
  1. 陳啟智(2009)。電化學方法製備鋰鐵氧化物薄膜鋰電池材料之研究。中興大學材料科學與工程學系所學位論文。2009。1-40。