Title

利用雞皮生產膠原蛋白及生質柴油

Translated Titles

Collagen and Biodiesel Production from Chicken Skins

DOI

10.6845/NCHU.2015.00125

Authors

林佳緯

Key Words

雞皮 ; 膠原蛋白 ; 生質柴油 ; 轉酯化反應 ; 胃蛋白酶 ; 廢棄物 ; chicken skin ; collagen ; biodiesel ; transesterification ; pepsin ; wastes

PublicationName

中興大學食品暨應用生物科技學系所學位論文

Volume or Term/Year and Month of Publication

2015年

Academic Degree Category

博士

Advisor

蔡碩文

Content Language

繁體中文

Chinese Abstract

雞皮是原料潔淨且規模量大的雞隻加工廢棄物,可惜目前大多數都是用於飼料用途。本研究將含有豐富膠原蛋白及脂肪的雞皮用於膠原蛋白的萃取及生質柴油轉酯化生成,以提升其經濟價值並同時解決環保問題。 將雞皮原料絞碎去除脂肪後,以酸併用酵素法萃取膠原蛋白。數種條件中以雞皮原料加入 10 倍 (v/w) 0.5 M 醋酸併用 0.1% (w/v) 胃蛋白酶 (56 units/mg),於4°C下萃取 24 小時,可以得到最佳的膠原蛋白產率(3.68±0.27%),純度 (72.19±18.16%) 和回收率 (78.26±5.73%)。SDS-PAGE 電泳的結果確認萃取所得的膠原蛋白為第一型膠原蛋白。將自雞皮萃取的酸可溶性膠原蛋白溶解於 0.5 M 醋酸中,但當添加的 NaCl 濃度超過 2% (w/v) 時溶解度就會下降。此外,萃取純化的膠原蛋白在 pH 5–6 的環境中展現相對高的溶解度,但在較酸和較鹼的環境中表現較低的溶解度。 以100 °C的沸水隔水加熱雞皮原料1小時,可得到低酸價 (0.13±0.01 mg KOH/g)的雞油,有利於後續的轉酯化反應。採用甲醇和雞油以 6:1 的莫耳比率搭配 1% (w/w) 的氫氧化鉀作為催化劑,在 60°C下作用 2 小時,轉酯化生成脂肪酸甲酯的產量為771.54±15.28 mg/mL。採用乙醇和雞油以 6:1 的莫耳比率搭配 1% (w/w) 的乙醇鈉作為催化劑,在 78°C下作用 3 小時,轉酯化生成脂肪酸乙酯的產量為722.98±37.38 mg/mL。兩者產量沒有顯著差異(P > 0.05)。採用甲醇、乙醇和雞油以 3:3:1的莫耳比率搭配 1% (w/w) 的氫氧化鉀作為催化劑,在 50°C下作用 1 小時,轉酯化生成脂肪酸甲酯/乙酯混合物的產量為 714.86±29.99mg/mL。三種製程製備所得的脂肪酸甲酯,脂肪酸乙酯和脂肪酸甲酯/乙酯混合物 (3:3) 其燃料性質如密度、黏度、硫含量、酸價和閃點都符合CNS 15072 生質柴油國家標準和 EN 14214 規範。 本研究開發萃取雞皮中膠原蛋白的方法可以提供食品、化妝品及醫藥品用膠原蛋白的另一項選擇。利用雞油轉酯化成生質柴油的製程則具效能及環保的優勢。未來若能整合膠原蛋白萃取和生產生質柴油的方法進入禽類加工廢棄物的生物精煉程序,將可再提升廢棄物的應用價值。

English Abstract

Chicken skins are the clean and massive processing wastes of poultry processing plants. However, most of that are applied to feed industry. In this research, the collagen extraction processes and the transesterification biodiesel processes from the chicken skins are demonstrated for better utilization and increasing the economic value. The simultaneous acid and enzyme treatment is used to extract collagen from the ground and defatted chicken skins material. Collagen in the raw material were extracted by a combined solvent of 10 volumes (v/w) of 0.5 M acetic acid and 0.1% (w/v) pepsin (56 units/mg) for 24 hours at 4°C. In this processes, the highest collagen yield (3.68±0.27%), purity (72.19±18.16%) and recovery (78.26±5.73%) can be obtained. SDS-PAGE confirmed the extracted collagen is type I collagen. Moreover, the avian collagen extracted from chicken skin retained a relatively high solubility in 0.5 M acetic acid, but turned to insoluble once the additive NaCl exceeded 2% (w/v). Furthermore, extracted collagens displayed relatively high solubility in the pH range 5–6 but were much less soluble out with this narrow pH range on both acidic and basic side. The low acid value (0.13±0.01 mg KOH/g) chicken oil that benefited subsequent transesterification reactions can be recovered after the raw semi-solid chicken skins were water bathed under 100°C for one hour. Fatty acid methyl esters (771.54±15.28 mg/mL) were synthesized from the substrates of methanol and oil in the molar ratio of 6:1 with 1% (w/w) potassium hydroxide as catalyst, at 60°C for 2 hours. There is no significant difference (P > 0.05) with the amounts of fatty acid ethyl esters (722.98±37.38 mg/mL) which were prepared from ethanol and oil in the molar ratio of 6:1 with 1% (w/w) sodium ethoxide as catalyst, at 78°C for 3 hours. Furthermore, the total amounts of fatty acid methyl/ethyl esters (714.86±29.99 mg/mL) were obtained from the substrates formula of methanol, ethanol, and oil in the molar ratios of 3:3:1, reacted with 1% (w/w) potassium hydroxide as catalyst, at 50°C for 1 hour. The fuel characteristics such as density, viscosity, sulphur content, acid value, and flash point of prepared methyl esters, ethyl esters, and the methyl/ethyl esters mixture were all within the specifications of CNS 15072 and EN 14214. The collagen extraction processes demonstrated in this study provide an alternative source for food, cosmetic and medical uses. Biodiesel produced from the efficient transesterification of chicken oils closely meet the trends of future energy. Integration of the developed collagen extraction and the biodiesel production into the biorefinery processes of poultry wastes may further extend their value.

Topic Category 農業暨自然資源學院 > 食品暨應用生物科技學系所
生物農學 > 生物科學
Reference
  1. 1. 農業廢棄物共同清除處理機構管理辦法。2002。行政院環境保護署。
    連結:
  2. 3. 農業廢棄物排放量。行政院農業委員會。
    連結:
  3. 8. Marulanda, V.F., Anitescu, G. and Tavlarides, L.L. Investigations on supercritical transesterification of chicken fat for biodiesel production from low-cost lipid feedstocks. The Journal of Supercritical Fluids. 2010. 54: p. 53-60.
    連結:
  4. 9. Li, Y., Asadi, A., Monroe, M.R. and Douglas, E.P. pH effects on collagen fibrillogenesis in vitro: Electrostatic interactions and phosphate binding. Materials Science and Engineering C, 2009. 29: p. 1643-1649.
    連結:
  5. 12. Cheng, F.Y., Hsu, F.W., Chang, H.S., Lin, L.C. and Sakata, R. Effect of different acids on the extraction of pepsin-solubilised collagen containing melanin from silky fowl feet. Food Chemistry, 2009. 113: p. 563-567.
    連結:
  6. 13. Gelse, K., Pöschl, E. and Aigner, T. Collagens—structure, function, and biosynthesis. Advanced Drug Delivery Reviews, 2003. 55: p. 1531-1546.
    連結:
  7. 14. Muyonga, J.H., Cole, C.G.B. and Duodu, K.G. Characterisation of acid soluble collagen from skins of young and adult Nile perch (Lates niloticus). Food Chemistry, 2004. 85: p. 81-89.
    連結:
  8. 15. Kolodziejska, I., Skierka, E., Sadowska, M., Kolodziejska, W. and Niecikowska, C. Effect of extracting time and temperature on yield of gelatin from different fish offal. Food Chemistry, 2008. 107: p. 700-706.
    連結:
  9. 17. Karim, A.A. and Bhat, R. Fish gelatin: properties, challenges, and prospects as an alternative to mammalian gelatins. Food Hydrocolloids, 2009. 23: p. 563-576.
    連結:
  10. 18. Kasankala, L.M., Xue, Y., Weilong, Y., Hong, S.D. and He, Q. Optimization of gelatine extraction from grass carp (Catenopharyngodon idella) fish skin by response surface methodology. Bioresource Technology, 2007. 98: p. 3338-3343.
    連結:
  11. 21. Hoque, M.E., Singh, A. and Chuan, Y.L. Biodiesel from low cost feedstocks: The effects of process parameters on the biodiesel yield. Biomass and Bioenergy, 2011. 35: p. 1582-1587.
    連結:
  12. 23. Gutiérrez, L.F., Sánchez, Ó.J. and Cardona, C.A. Process integration possibilities for biodiesel production from palm oil using ethanol obtained from lignocellulosic residues of oil palm industry. Bioresource Technology. 2009. 100: p. 1227-1237.
    連結:
  13. 24. Warabi, Y., Kusdiana, D. and Saka, S. Reactivity of triglycerides and fatty acids of rapeseed oil in supercritical alcohols. Bioresource Technology. 2004. 91: p. 283-287.
    連結:
  14. 25. Kim, M., Yan, S., Salley, S.O. and Ng, K.Y.S. Competitive transesterification of soybean oil with mixed methanol/ethanol over heterogeneous catalysts. Bioresource Technology. 2010. 101: p. 4409-4414.
    連結:
  15. 26. Joshi, H., Moser, B.R. and Walker, T. Mixed alkyl esters from cottonseed oil: Improved biodiesel properties and blends with diesel fuel. Journal of the American Oil Chemists' Society. 2012. 89: p. 145-153.
    連結:
  16. 28. Mutreja, V., Singh, S. and Ali, A. Biodiesel from mutton fat using KOH impregnated MgO as heterogeneous catalysts. Renewable Energy. 2011. 36: p. 2253-2258.
    連結:
  17. 30. Jeong, G.T., Yang, H.S. and Park, D.H. Optimization of transesterification of animal fat ester using response surface methodology. Bioresource Technology. 2009. 100: p. 25-30.
    連結:
  18. 38. Gerpen, J.V. Biodiesel processing and production. Fuel Processing Technology. 2005. 86: p. 1097-1107.
    連結:
  19. 39. Bianchi, C.L., Boffito, D.C., Pirola, C. and Ragaini, V. Low temperature de-acidification process of animal fat as a pre-step to biodiesel production. Catalysis Letters. 2010. 134: p. 179-183.
    連結:
  20. 40. Tyagi, O.S., Atray, N., Kumar, B. and Datta, A. Production, characterization and development of standards for biodiesel-a review. MĀPAN-Journal of Metrology Society of India. 2010. 25: p. 197-218.
    連結:
  21. 41. Alptekin, E. and Canakci, M. Optimization of pretreatment reaction for methyl ester production from chicken fat. Fuel. 2010. 89: p. 4035-4039.
    連結:
  22. 42. García, M., Gonzalo, A., Sánchez, J.L., Arauzo, J. and Simoes, C. Methanolysis and ethanolysis of animal fats: A comparative study of the influence of alcohols. Chemical Industry and Chemical Engineering Quarterly, 2011. 17: p. 91-97.
    連結:
  23. 43. Joshi, H., Moser, B.R., Toler, J. and Walker, T. Preparation and fuel properties of mixtures of soybean oil methyl and ethyl esters. Biomass and Bioenergy, 2010. 34: p. 14-20.
    連結:
  24. 44. Keera, S.T., El Sabagh, S.M. and Taman, A.R. Transesterification of vegetable oil to biodiesel fuel using alkaline catalyst. Fuel. 2011. 90: p. 42-47.
    連結:
  25. 47. Mendow, G., Veizaga, N.S. and Querini, C.A. Ethyl ester production by homogeneous alkaline transesterification: Influence of the catalyst. Bioresource Technology. 2011. 102: p. 6385-6391.
    連結:
  26. 48. Moser, B.R. Biodiesel production, properties, and feedstocks. In Vitro Cellular & Developmental Biology-Plant. 2009. 45: p. 229-266.
    連結:
  27. 49. Warabi, Y., Kusdiana, D. and Saka, S. Reactivity of triglycerides and fatty acids of rapeseed oil in supercritical alcohols. Bioresource Technology. 2004. 91: p. 283-287.
    連結:
  28. 50. Lang, X., Dalai, A.K., Bakhshi, N.N., Reaney, M.J. and Hertz, P.B. Preparation and characterization of bio-diesels from various bio-oils. Bioresource Technology. 2001. 80: p. 53-62.
    連結:
  29. 51. Keera, S.T., El Sabagh, S.M. and Taman, A.R. Transesterification of vegetable oil to biodiesel fuel using alkaline catalyst. Fuel. 2011. 90:p. 42-47.
    連結:
  30. 52. Karmee, S.K., Patria, R.D. and Lin, C.S.K. Techno-economic evaluation of biodiesel production from waste cooking oil-a case study of Hong Kong. International Journal of Molecular Sciences. 2015. 16: p. 4362-4371.
    連結:
  31. 53. Shu, Q., Nawaz, Z., Gao, J., Liao, Y., Zhang, Q., Wang, D. and Wang, J. Synthesis of biodiesel from a model waste oil feedstock using a carbon-based solid acid catalyst: reaction and separation. Bioresource Technology. 2010. 101: p. 5374-5384.
    連結:
  32. 54. Canakci, M. and Van Gerpen, J. Biodiesel production from oils and fats with high free fatty acids. Transactions of the ASAE. 2001. 44: p. 1429-1436.
    連結:
  33. 56. Issariyakul, T., Kulkarni, , M.G., Dalai, A.K. and Bakhshi, N.N. Production of biodiesel from waste fryer grease using mixed methanol/ethanol system. Fuel Processing Technology. 2007. 88: p. 429-436.
    連結:
  34. 59. Pikul, J. and Kummerow, F. A. Effect of total lipids triacylglycerols and phospholipids on malonaldehyde content in different types of chicken muscles and the corresponding skin. Journal of Food Biochemistry. 1989. 13: p. 409-427.
    連結:
  35. 60. Li, C.M., Zhong, Z.H., Wan, Q.H., Zhao, H., Gu, H.F. and Xiong, S.B. Preparation and thermal stability of collagen from scales of grass carp (Ctenopharyngodon idellus). European Food Research and Technology, 2008. 227: p. 1467-1473.
    連結:
  36. 61. Nalinanon, S., Benjakul, S. and Kishimura, H.Collagens from the skin of arabesque greenling (Pleurogrammus azonus) solubilized with the aid of acetic acid and pepsin from albacore tuna (Thunnus alalunga) stomach. Journal of the Science of Food and Agriculture, 2010.90: p. 1492-1500.
    連結:
  37. 62. Bowes, J.H., Elliott, R.G. and Moss, J.A. The composition of collagen and acid-soluble collagen of bovine skin. Biochemical Journal, 1955. 61: p. 143-150.
    連結:
  38. 63. Lin, Y.K. and Liu, D.C. Comparison of physical–chemical properties of type I collagen from different species. Food Chemistry, 2006. 99: p. 244-251.
    連結:
  39. 64. Parenteau-Bareil, R., Gauvin, R., Cliche, S., Gariépy, C., Germain, L. and Berthod, F. Comparative study of bovine, porcine and avian collagens for the production of a tissue engineered dermis. Acta Biomaterialia, 2011. 7: p. 3757-3765.
    連結:
  40. 65. Woo, J.W., Yu, S.J., Cho, S.M., Lee, Y.B. and Kim, S.B. Extraction optimization and properties of collagen from yellowfin tuna (Thunnus albacares) dorsal skin. Food Hydrocolloids, 2008. 22: p. 879-887.
    連結:
  41. 66. Cliche, S., Amiot, J., Avezard, C. and Gariépy, C.Extraction and characterization of collagen with or without telopeptides from chicken skin. Poultry Science, 2003. 82: p. 503-509.
    連結:
  42. 67. Nalinanon, S., Benjakul, S., Visessanguan, W. and Kishimura, H. Use of pepsin for collagen extraction from the skin of bigeye snapper (Priacanthus tayenus). Food Chemistry, 2007. 104: p. 593-601.
    連結:
  43. 68. Bonifer, L.B. and Froning, G.W. Chicken skin composition as affected by aqueous washing. Journal of Food Science, 1996.61: p. 895-898.
    連結:
  44. 69. Bannister, D.W. and Burns, A.B. Pepsin treatment of avian skin collagen. Effects on solubility, subunit composition and aggregation properties. Biochemical Journal, 1972. 129: p. 677-681.
    連結:
  45. 70. Chang, P., Kuan, S., Eberlein, G., Burke, D. and Jones, R. Characterization of bovine collagens using capillary electrophoresis-an alternative to slab gel electrophoresis. Journal of Pharmaceutical and Biomedical Analysis, 2000. 22: p. 957-966.
    連結:
  46. 71. Ogawa, M., Moody, M.W., Portier, R.J., Bell, J., Schexnayder, M.A. and Losso, J.N. Biochemical properties of black drum and sheepshead seabream skin collagen. Journal of Agricultural and Food Chemistry, 2003. 51: p. 8088-8092.
    連結:
  47. 72. Edwards, C.A. and O’Brien, W.D.Jr. Modified assay for determination of hydroxyproline in a tissue hydrolyzate. Clinica Chimica Acta, 1980. 104: p. 161-167.
    連結:
  48. 73. Laemmli, U.K. Cleavage of structure protein during the assembly of head bacteriophage T4. Nature, 1970. 277: p. 680-685.
    連結:
  49. 74. Montero, P., Jiménez-Colmenero, F. and Borderìas, J. Effect of pH and the presence of NaCl on some hydration properties of collagenous material from trout (Salmo irideus Gibb) muscle and skin. Journal of the Science of Food and Agriculture, 1991. 54: p. 137-146.
    連結:
  50. 76. Skierka, E. and Sadowska, M. The influence of different acids and pepsin on the extractability of collagen from the skin of Baltic cod (Gadus morhua). Food Chemistry, 2007. 105: p. 1302-1306.
    連結:
  51. 77. Liu, D.C., Lin, Y.K. and Chen, M.T. Optimum condition of extracting collagen from chicken feet and its characteristics. Asian-Australasian Journal of Animal Sciences, 2001. 14: p. 1638-1644.
    連結:
  52. 78. Knaggs, J. CXLIV. Studies on collagen. The changes which collagen undergoes when treated with solutions of hydrochloric acid and sodium hydroxide. PhD Thesis. University of London, UK. 1929. p. 1308-1327.
    連結:
  53. 79. Fratzl, P. Collagen: Structure and Mechanics. Springer Science+Business Media, New York. 2008. p. 157,
    連結:
  54. 80. Jongjareonrak, A., Benjakul, S., Visessanguan, W. and Tanaka, M. Isolation and characterization of collagen from bigeye snapper (Priacanthus macracanthus) skin. Journal of the Science of Food and Agriculture, 2005. 85: p. 1203-1210.
    連結:
  55. 81. Kittiphattanabawon, P., Benjakul, S., Visessanguan, W., Nagai, T. and Tanaka, M. Characterisation of acid-soluble collagen from skin and bone of bigeye snapper (Priacanthus tayenus). Food Chemistry, 2005. 89: p. 363-372.
    連結:
  56. 82. Zeng, S.K., Zhang, C.H., Lin, H., Yang, P., Hong, P.Z. and Jiang, Z. Isolation and characterisation of acid-solubilised collagen from the skin of Nile tilapia (Oreochromis niloticus). Food Chemistry, 2009. 116: p. 879-883.
    連結:
  57. 83. Ahmad, M. and Benjakul, S. Extraction and characterisation of pepsin-solubilised collagen from the skin of unicorn leatherjacket (Aluterus monocerous). Food Chemistry, 2010. 120: p. 817-824.
    連結:
  58. 84. Huang, Y.R., Shiau, C.Y., Chen, H.H. and Huang, B.C. Isolation and characterization of acid and pepsin-solubilized collagens from the skin of balloon fish (Diodon holocanthus). Food Hydrocolloids, 2011. 25: p. 1507-1513.
    連結:
  59. 85. Singh, P., Benjakul, S., Maqsood, S. and Kishimura, H. Isolation and characterisation of collagen extracted from the skin of striped catfish (Pangasianodon hypophthalmus). Food Chemistry, 2011.124: p. 97-105.
    連結:
  60. 87. Highberger, J.H. The isoelectric point of collagen. Journal of the American Chemical Society, 1939. 61: p. 2302-2303.
    連結:
  61. 88. Zhang, Z., Li, G. and Shi, B. Physicochemical properties of collagen, gelatin and collagen hydrolysate derived from bovine limed split wastes. Journal of the Society of Leather Technologists and Chemists, 2006. 90: p. 23-28.
    連結:
  62. 89. Jeong, G.T., Yang, H.S. and Park, D.H. Optimization of transesterification of animal fat ester using response surface methodology. Bioresource Technology, 2009.100: p. 25-30.
    連結:
  63. 90. Wang, Y., Ou, S., Liu, P. and Zhang, Z. Preparation of biodiesel from waste cooking oil via two-step catalyzed process. Energy Conversion and Management, 2007. 48: p. 184-188.
    連結:
  64. 91. Marulanda, V.F., Anitescu, G. and Tavlarides, L.L. Biodiesel fuels through a continuous flow process of chicken fat supercritical transesterification.Energy Fuels, 2010. 24: p. 253-260.
    連結:
  65. 92. Boey, P.L., Maniam, G.P., Hamid, S.A. and Ali, D.M.H. Crab and cockle shells as catalysts for the preparation of methyl esters from low free fatty acid chicken fat. Journal of the American Oil Chemists' Society, 2011.88: p. 283-288.
    連結:
  66. 93. Lam, M.K. and Lee, K.T. Mixed methanol–ethanol technology to produce greener biodiesel from waste cooking oil: A breakthrough for SO42−/SnO2–SiO2 catalyst. Fuel Processing Technology, 2011.92: p. 1639-1645.
    連結:
  67. 95. Arnaud, E., Relkin, P., Pina, M. and Collignan, A. Characterisation of chicken fat dry fractionation at the pilot scale. European Journal of Lipid Science and Technology, 2004. 106: p. 591–598.
    連結:
  68. 96. Kondamudi, N., Strull, J., Misra, M. and Mohapatra, S.K. A green process for producing biodiesel from feather meal. Journal of Agricultural and Food Chemistry, 2009. 57: p. 6163-6166.
    連結:
  69. 97. Kulkarni, M.G., Dalai, A.K. and Bakhshi, N.N. Transesterification of canola oil in mixed methanol/ethanol system and use of esters as lubricity additive. Bioresource Technology, 2007.98: p.2027-2033.
    連結:
  70. 100. CNS 14474. Method of test for density and relative density of liquids by digital density meter. 2000.
    連結:
  71. 101. CNS 3390. Method of test for kinematic viscosity of transparent and opaque liquids (and calculation of dynamic viscosity). 1972.
    連結:
  72. 102. CNS 3574. Method of test for flash point by Pensky-Martens closed cup tester. 1973.
    連結:
  73. 103. CNS 14505. Method of test for total sulfur in light hydrocarbons, motor fuels and oils by ultraviolet fluorescence. 2001.
    連結:
  74. 105. CNS 14906. Method of test for acid number of petroleum products by potentiometric titration. 2005.
    連結:
  75. 107. Lee, K.T. and Foglia, T.A. Synthesis, purification, and characterization of structured lipids produced from chicken fat. Journal of the American Oil Chemists' Society, 2000. 77: p. 1027-1034.
    連結:
  76. 108. Lee, K.T. and Foglia, T.A. Fractionation of chicken fat triacylglycerols:Synthesis of structured lipids with immobilized lipases. Journal of Food Science, 2000. 65: p. 826-831.
    連結:
  77. 109. Arnaud, E., Trystram, G., Relkin, P. and Collignan, A. Thermalcharacterization of chicken fat dry fractionation process. Journal of Food Engineering, 2006 . 72: p. 390-397.
    連結:
  78. 110. 林佳緯,蔬果加工廢棄物在生物酒精生產上之應用。2007年。國立中興大學 食品暨應用生物科技學系碩士論文。
    連結:
  79. 112. Wyatt, V.T., Hess, M.A., Dunn, R.O., Foglia, T.A., Haas, M.J. and Marmer, W.N. Fuel properties and nitrogen oxide emission levels of biodiesel produced from animal fats. Journal of the American Oil Chemists' Society, 2005.82: p. 585-591.
    連結:
  80. 113. Canoira, L., Rodríguez-Gamero, M., Querol, E., Alcántara, R., Lapuerta, M. and Oliva,F. Biodiesel from low-grade animal fat: Production process assessment and biodiesel properties characterization. Industrial and Engineering Chemistry Research, 2008. 47: p. 7997-8004.
    連結:
  81. 114. Lebedevas, S. and Vaicekauskas, A. Use of waste fats of animal and vegetable origin for the production of biodiesel fuel: Quality, motor properties, and emissions of harmful components. Energy Fuels, 2006. 20: p. 2274-2280.
    連結:
  82. 115. Foglia, T.A., Nelson, L.A., Dunn, R.O. and Marmer, W.N. Low-temperature properties of alkyl esters of tallow and grease. Journal of the American Oil Chemists' Society, 1997. 74: p. 951-955.
    連結:
  83. 116. Mittelbach, M. Diesel fuel derived from vegetable oils, VI: Specifications and quality control of biodiesel.Bioresource Technology, 1996. 56: p. 7-11.
    連結:
  84. 2. 103年底畜禽飼養場數及在養量與上一年比較-按縣市別分,畜牧類農情調查統 計結果(103年)。2015年2月25日。行政院農業委員會。
  85. 4. 蘇夢蘭,化腐朽為神奇-家禽屠宰副產物化製場。2000。農政與農情,行政院農 業委員會。
  86. 5. 經濟部事業廢棄物再利用種類及管理方式。2011。經濟部。
  87. 6. 徐余,用一種新方法由雞冠中萃取膠原蛋白與玻尿酸之特性分析。2008年。國 立台東大學生命科學系碩士論文。
  88. 7. 林詠凱,雞腳膠原蛋白與明膠之萃取及特性之研究。2001年。國立中興大學畜 產學系碩士論文。
  89. 10. 洪雅萍,膠原蛋白產品的功效。2004。科學發展月刊,380,p. 30-35。
  90. 11. 黃彥富,湯正明,徐善慧,揭開膠原蛋白的神秘面紗。2003。科學發展月刊, 362,p. 44-47。
  91. 16. 胡峻銘,無縫膠囊於中藥製劑上的應用。2003。中國醫藥學院中國藥學研究所 藥學碩士論文。
  92. 19. 黃書政,膠原蛋白的開發與應用。2010。食品工業發展研究所,42,p. 1-2。
  93. 20. Lin, C.W., Loughran, M., Tsai, T.Y. and Tsai, S.W. Evaluation of convenient extraction of chicken skin collagen using organic acid and pepsin combination. Journal of the Chinese Society of Animal Science, 2013. 42: p. 27-38.
  94. 22. 戴文堅,花蓮縣運用生質柴油之規劃研究。2007。
  95. 27. Ahmad, M., Ahmed, S., Hassan, F.U., Arshad, M., Khan, M.A., Zafar, M. and Sultana, S. Base catalyzed transesterification of sunflower oil biodiesel. African Journal of Biotechnology. 2010. 9: p. 8630-8635.
  96. 29. Gugule, S., Fatimah, F. and Rampoh, Y. The utilization of chicken fat as alternative raw material for biodiesel synthesis. Animal Production. 2011. 13: p. 115-121.
  97. 31. 劉文宗,生質柴油發展與工業化設計。2007。永續產業發展雙月刊,第 35 期, p. 32-39。
  98. 32. 林昀輝,李宏台,盧文章,台灣發展生質柴油的技術創新。2006。碳經濟月刊, 第 3 期,p. 2-9。
  99. 33. 2014年能源產業技術白皮書。2014年5月。經濟部能源局。
  100. 34. 廢食用油變公車柴油上路,開啟綠能運輸時代。2012年7月27日。經濟部能 源局。
  101. 35. 陳奕宏,綠色能源科技整合學程教材-生質能概論。2007。國立高雄應用科技 大學。
  102. 36. 經濟部積極推動環保減碳,審慎研議生質柴油政策。2014年5月5日。經濟 部能源局
  103. 37. http://www.afdc.energy.gov/fuels/biodiesel_blends.html
  104. 45. Schuchardt, U., Sercheli, R. and Vargas, R.M. Transesterification of vegetable oils: a review. Journal of the Brazilian Chemical Society. 1998. 9: p. 199-210.
  105. 46. Hillion, G., Delfort, B., Pennec, D.L., Bournay, L. and Chodorge, J.A. Biodiesel production by a continuous process using a heterogeneous catalyst. Preprints of Papers - American Chemical Society, Division of Fuel Chemistry. 2003. 48: p. 636-638.
  106. 55. Leung, D.Y.C. Development of a clean biodiesel fuel in Hong Kong using recycled oil. Water, Air, and Soil Pollution. 2001. 130: p. 277-282.
  107. 57. 陳介武,生質柴油焦點-生質柴油,知多少。美國大豆出口協會。
  108. 58. Tomaszewska-Gras, J. and Konieczny, P. A DSC study on the effect of marination on the stability of skin collagen from chicken wings. Acta Scientiarum Polonorum, Technologia Alimentaria. 2010. 9: p. 413-423.
  109. 75. Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 1951. 193: p. 265-275.
  110. 86. Vojdani, F. Methods of testing protein functionality. G.M. Hall (Ed.). Solubility. Great Britain: St Edmundsbury Press. 1996. p. 11-60.
  111. 94. Mege, R.A., Manalu, W., Kusumorini, N. and Nasution, S.H. Pengaruh superovulasi terhadap produksi anak babi. Journal of Animal Production, 2006. 8: p.14-18.
  112. 98. CNS 13568. Methods of test for acid value, saponification value, ester value, iodine value, hydroxyl value and unsaponificable matter of chemical products. 1995. p. 1-11.
  113. 99. AOAC official method 996.06. Fat (Total, Saturated, and Unsaturated) in 406 Foods. Hydrolytic Extraction Gas Chromatographic Method. 1996.
  114. 104. CNS 4446. Method of test for determination of water in petroleum products, lubricating oils, and additives by coulometric Karl Fisher titration. 1978.
  115. 106. Baião, N.C. and Lara, L.J.C. Oil and fat in broiler nutrition. Brazilian Journal of Poultry Science, 2005. 7: p. 129-141.
  116. 111. Sridharan, R. and Mathai, I.M. Transesterification reactions. Journal of Scientific and Industrial Research, 1974. 22: p. 178-187.